
PCM Reference : Perform Design Analysis 

SCOT Study Committee Number/Name : Reliability & Safety SC 

 

 

Guideline Technology 

 

Title: Life Data Analysis Guideline 

 

 

Unique Identifier: 240-49230067 

Alternative Reference 
Number: 

N/A 

Area of Applicability: Engineering 

Documentation Type: Guideline 

Revision: 3 

Total Pages: 26 

Next Review Date: January 2024 

Disclosure Classification: CONTROLLED 
DISCLOSURE 

 

Compiled by Approved by Authorised by 

………………………………….. ………………………………….. ………………………………….. 

G.F. Fuhnwi 

Snr Technologist: System 
Design  

P. Phochana 

Chief Technologist: System 
Design  

S. Ndlovu 

SC Chairperson 

Date: …………………………… Date: …………………………… Date: …………………………… 

  Supported by TC 

 
 

………………………………….. 

  L. Fernandez 

TC Chairperson 

  Date: …………………………… 



Life Data Analysis Guideline 

 

CONTROLLED DISCLOSURE 

When downloaded from the EDMS, this document is uncontrolled and the responsibility rests with the user to ensure it is in line 
with the authorised version on the system. 

 

 

Unique Identifier: 240-49230067 

 Revision: 3 

 Page: 2 of 26 

 

CONTENTS 
Page 

1. INTRODUCTION ...................................................................................................................................................... 4 

2. SUPPORTING CLAUSES ........................................................................................................................................ 4 

2.1 SCOPE .............................................................................................................................................................. 4 
2.1.1 Purpose ..................................................................................................................................................... 4 
2.1.2 Applicability................................................................................................................................................ 4 

2.2 NORMATIVE/INFORMATIVE REFERENCES .................................................................................................. 4 
2.2.1 Normative .................................................................................................................................................. 4 
2.2.2 Informative ................................................................................................................................................. 4 

2.3 DEFINITIONS .................................................................................................................................................... 4 
2.3.1 Disclosure Classification ........................................................................................................................... 5 

2.4 ABBREVIATIONS .............................................................................................................................................. 5 
2.5 ROLES AND RESPONSIBILITIES .................................................................................................................... 5 
2.6 PROCESS FOR MONITORING ........................................................................................................................ 5 
2.7 RELATED/SUPPORTING DOCUMENTS ......................................................................................................... 5 

3. LIFE DATA ANALYSIS OVERVIEW ....................................................................................................................... 6 

3.1 STATISTICAL BACKGROUND ......................................................................................................................... 6 
3.2 LIFE DATA ANALYSIS PROCESS ................................................................................................................. 11 
3.3 COMPONENT LIFE DATA ANALYSIS ........................................................................................................... 13 

3.3.1 Two parameter Weibull distribution ......................................................................................................... 13 
3.3.2 Three parameter Weibull distribution ...................................................................................................... 16 
3.3.3 Relationship of shape parameter with bathtub curve .............................................................................. 17 
3.3.4 EXAMPLE 1............................................................................................................................................. 18 

3.4 SYSTEM LIFE DATA ANALYSIS .................................................................................................................... 20 
3.4.1 Stochastic point processes ...................................................................................................................... 20 
3.4.2 Laplace test ............................................................................................................................................. 20 
3.4.3 EXAMPLE 2............................................................................................................................................. 22 
3.4.4 EXAMPLE 3............................................................................................................................................. 23 
3.4.5 EXAMPLE 4............................................................................................................................................. 24 

4. AUTHORISATION .................................................................................................................................................. 26 

5. REVISIONS ............................................................................................................................................................ 26 

6. DEVELOPMENT TEAM ......................................................................................................................................... 26 

7. ACKNOWLEDGEMENTS ...................................................................................................................................... 26 

 

FIGURES 

Figure 1: Probability density function ............................................................................................................................ 7 
Figure 2: Bathtub curve ................................................................................................................................................ 8 
Figure 3: Right censored data ...................................................................................................................................... 8 
Figure 4: Two-sided confidence bounds ....................................................................................................................... 9 
Figure 5: Lower one-sided confidence bound ............................................................................................................ 10 
Figure 6: Upper one-sided confidence bound ............................................................................................................ 10 
Figure 7: Life data analysis basic steps ...................................................................................................................... 11 
Figure 8: Life data analysis execution sequence diagram ......................................................................................... 12 
Figure 9: Two parameter Weibull distribution (for different values of β) ..................................................................... 14 
Figure 10: Weibull probability paper ........................................................................................................................... 16 
Figure 11: Relationship between bathtub curve and Weibull shape parameter ......................................................... 17 
Figure 12: Weibull analysis ......................................................................................................................................... 19 
Figure 13: Arrival and interarrival values .................................................................................................................... 21 
Figure 14: Weibull plot for repairable system ............................................................................................................. 25 
 
 

file:///C:/0%20Eskom/3%20My%20Facilities/Document%20Management/3.%20Document%20Centre/Work%20Area/240-xxx%20docs/240-49230067/240-49230067%20Life%20Data%20Analysis%20Guideline%20(Rev%203).docx%23_Toc535311407


Life Data Analysis Guideline 

 

CONTROLLED DISCLOSURE 

When downloaded from the EDMS, this document is uncontrolled and the responsibility rests with the user to ensure it is in line 
with the authorised version on the system. 

 

 

Unique Identifier: 240-49230067 

 Revision: 3 

 Page: 3 of 26 

 

TABLES 

Table 1: Mean and median ranking ............................................................................................................................ 15 
Table 2: Time-to-failure of individual items ................................................................................................................. 18 
Table 3: Ordered time-to-failure data with median ranks ........................................................................................... 18 
Table 4: Arrival and interarrival times ......................................................................................................................... 22 
Table 5: Ordered arrival times .................................................................................................................................... 23 
Table 6: Chronological ordered data .......................................................................................................................... 24 
 

  



CONTROLLED DISCLOSURE 

When downloaded from the EDMS, this document is uncontrolled and the responsibility rests with the user to ensure it is in line 
with the authorised version on the system. 

Life Data Analysis Guideline 

 

 

 

Unique Identifier: 240-49230067 

 Revision: 3 

 Page: 4 of 26 

 

1. INTRODUCTION 

Life Data Analysis refers to the application of statistical analyses to determine the reliability 
characteristics of either components or systems based on actual failure data. The required 
failure data may originate from component or system development (e.g. test data), or may be 
recorded during operations and maintenance using an appropriate FRACAS (Failure Reporting 
and Corrective Action System). 
 
It is imperative to distinguish between component Life Data Analysis (i.e. non-repairable items 
where data typically consists of individual times-to-failure) and system Life Data Analysis (i.e. 
repairable systems where data typically consists of times between successive failures in a 
single system). 

2. SUPPORTING CLAUSES 

2.1 SCOPE 

This guideline describes the process of performing Life Data Analysis on actual failure data. It 
briefly refers to both component and system Life Data Analysis and includes a few examples to 
illustrate the differences between them. Since it is not possible to include comprehensive 
information in this guideline, the user should consult with other references for a more detailed 
discussion. 

2.1.1 Purpose 

The purpose of this document is to provide guidance on performing failure analysis of either 
component or system failure data. 

2.1.2 Applicability 

This document shall apply throughout Eskom Holdings Limited Divisions. The intended users of 
this guideline include both Eskom technical personnel and sub-contractors. It is applicable 
primarily during operations and maintenance but can also be used during system design (e.g. 
analysis of test failure data). 

2.2 NORMATIVE/INFORMATIVE REFERENCES 

Parties using this document shall apply the most recent edition of the documents listed in the 
following paragraphs: 

2.2.1 Normative 

[1] ISO 9001, Quality Management Systems 

2.2.2 Informative 

[2] P.D.T. O’Connor and A. Kleyner, Practical Reliability Engineering, 5th edition, John Wiley, 
2012 

[3] C.E. Ebeling, An introduction to Reliability and Maintainability Engineering, 2nd edition, 
Waveland Press, 2010 

[4] www.weibull.com 

2.3 DEFINITIONS 

NONE 

http://www.weibull.com/
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2.3.1 Disclosure Classification  

Controlled Disclosure: Controlled Disclosure to external parties (either enforced by law, or 
discretionary). 

2.4 ABBREVIATIONS  

Abbreviation  Description 

f(t) Probability density function (pdf) 

F(t) Cumulative distribution function (cdf) 

FRACAS Failure Reporting and Corrective Action System 

IID Independently and Identically Distributed 

HPP Homogenous Poisson Process 

MTBF Mean Time Between Failure 

MTTF Mean Time To Failure 

NHPP Non-homogenous Poisson Process 

R(t) Reliability function 

β Shape parameter 

λ(t) Hazard (or failure) rate 

η Characteristic life, or scale parameter 

ϒ Failure-free life, or location parameter 

2.5 ROLES AND RESPONSIBILITIES 

None 

2.6 PROCESS FOR MONITORING 

None 

2.7 RELATED/SUPPORTING DOCUMENTS 

None 
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3. LIFE DATA ANALYSIS OVERVIEW 

LDA may be divided into two groups, namely Component Life Data Analysis and System Life 
Data Analysis. Component Life Data Analysis, which requires individual time-to-first-failure of 
non-repairable items, is typically analysed using Weibull analysis. The identified failure 
distribution (with associated distribution parameters) may be useful to influence maintenance 
strategies e.g. an item subject to wear-out may benefit from preventive maintenance. System 
Life Data Analysis refers to the analysis of failures occurring in repairable systems, which, as an 
example of a series of discrete events, can be analysed using event series analysis. 
 
Both Component LDA and System LDA are briefly discussed in this guideline and it is 
imperative to understand the differences between them. Unless the available failure data is 
carefully examined and correctly analysed, the analysis can lead to incorrect and misleading 
results. Care should especially be taken when analysing failure data for repairable systems 
collected automatically by failure reporting systems. 
 
Knowledge of the pattern of failure (i.e. failure distribution) is important to understand the 
dominant failure mechanisms, which, in turn, is necessary to improve component (and system) 
reliability. Improvement in reliability can be achieved by implementing a change in 1) design 
(e.g. redesign or modification), or 2) operations (e.g. duty cycle), or 3) maintenance (e.g. 
preventive maintenance). 
 
Regardless of the specific analysis requirement, it is recommended that at least a basic Pareto 
Analysis (i.e. “the significant few and the insignificant many” principle) be performed on 
available data. It is often found that a large proportion of failures are due to a small number of 
causes. Therefore, Pareto Analysis may be useful to plan further detailed LDA, where required. 
 
LDA is typically performed using an applicable software application but analysis can also be 
performed using graphical methods, i.e. probability plotting. 
 
In practice, LDA may be continually updated as more failure data becomes available. The 
results of LDA should, therefore, be put under configuration management (inclusive of 
identification of source of data, raw data used, software application data files, technical report, 
etc.). 

3.1 STATISTICAL BACKGROUND 

Reliability can be defined as “the probability that an item will perform its intended function 
without failure for a specified period of time”. Reliability, defined as a probability, is, therefore, 
quantified using the mathematics of probability and statistics. The reliability characteristics of an 
item can be described using four inter-related mathematical functions: 
 
a) Probability density function (pdf) = f(t) 

b) Cumulative distribution function (cdf) = unreliability function = F(t) 

c) Reliability function = R(t) 

d) Hazard rate (or failure rate) = λ(t) 

The probability density function describes the distribution of values as a function of a specific 
variable (e.g. time) and can be represented mathematically or on a graphical plot (where the x-
axis represents time). Figure 1 shows an example of a probability density function. 
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Figure 1: Probability density function  

The relationships between the four mathematical functions are as follows: 
 
 
 
 
 
 
 

 

Other parameters, often used in reliability engineering, include Mean Time to Failure (applicable 
to non-repairable items) and Mean Time Between Failure (applicable to repairable items). 

 
Note: MTTF (or MTBF) is frequently used as an indicator of “average life” of an item, which 

may be completely incorrect. The exponential distribution describes the situation where 
the hazard (or failure) rate is constant. It can be shown that the mean value of the 
exponential distribution (i.e. MTTF (or MTBF)) is 1/λ, and that 63.2% of items will have 

failed by t = MTTF (or MTBF). 
The most frequently used distributions in reliability engineering include the normal (or Gaussian) 
distribution, exponential distribution and Weibull distribution. 
 
The well-known bathtub curve is useful to indicate that the hazard (or failure) rate can be 
decreasing, constant or increasing over time. It consists of the infant mortality, useful life and 
wear-out life parts, as shown in Figure 2. Failures occurring during infant mortality (i.e. early 
failures) are typically caused by workmanship problems (i.e. quality control related), failures 
occurring during useful life (i.e. random failures) are typically externally induced and failures 
occurring during wear-out (i.e. end of life failures) are typically caused by fatigue and wear. 
Although mathematically identical, hazard rate is used for non-repairable items, while failure 
rate is used for repairable items. 
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Figure 2: Bathtub curve 

Censored data 

Complete life data means that the time-to-failure of all units in a sample is known. In many 
practical cases, all units in a sample may not have failed or the exact times-to-failure of all the 
units are not known. This type of data is called censored data and it may be right censored 
(also called suspended data), interval censored or left censored. Right censored data, as shown 
in figure 3, is frequently found in failure data. Unless it is correctly analysed, it will obviously 
result in incorrect and misleading results. Censored data is typically handled by all LDA 
software applications. 
 

 

 

 

 

 

 

 

 

 

 
Confidence bounds 

Since LDA results are estimates based on the observed lifetimes of a sample of units, there is 
uncertainty in the results due to the limited sample sizes. Confidence bounds (also called 
confidence intervals) are used to quantify this uncertainty due to sampling error by expressing 
the confidence that a specific interval contains the quantity of interest. It is not impossible to 
know the exact value of a reliability parameter, unless failure data for every single unit in the 
population can be analysed (which is usually an unrealistic situation). Confidence bounds define 
the range within which the specific value is likely to occur within a certain percentage of the 
time. It should be noted that each value is an estimate of the true value (which is an unknown). 
Confidence bounds can be expressed as two-sided or one-sided bounds and are typically 
calculated by all LDA software applications. 
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Figure 3: Right censored data 
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Two-sided confidence bounds define a closed interval where a certain percentage of the 
population is likely to lie. For example, Figure 4 shows 90% two-sided confidence bounds, 
where 90% of the population lies between X and Y with 5% less than X and 5% greater than Y. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Two-sided confidence bounds 

Essentially, one-sided confidence bounds are an open-ended version of two-sided bounds. A 
one-sided bound defines the point where a certain percentage of the population is either higher 
or lower than the defined point. This means that there are two types of one-sided bounds, 
namely upper and lower. An upper one-sided bound defines a point that a certain percentage of 
the population is less than. Conversely, a lower one-sided bound defines a point that a specified 
percentage of the population is greater than. For example, if X is a 95% lower one-sided bound, 
this would indicate that 95% of the population is greater than X (as shown in Figure 5). If X is a 
95% upper one-sided bound, this would indicate that 95% of the population is less than X (as 
shown in Figure 6).  
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Figure 5: Lower one-sided confidence bound 

 

 

Figure 6: Upper one-sided confidence bound 
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3.2 LIFE DATA ANALYSIS PROCESS 

LDA can be used to estimate the life of all items in a population by determining the parameters 
of a statistical distribution derived from failure data of a representative sample of units. LDA 
consists of the following four basic sequential steps: 

 

Definition

Define purpose and objective

Preparation

Obtain failure data to be analysed

Execution

Filter and examine data, determine type of analysis, select failure distribution, estimate

parameters of selected distribution, estimate reliability characteristics of population

Documentation

Evaluate results, compile technical report, provide recommendations

and prepare documentation for configuration management

 

Figure 7: Life data analysis basic steps 
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The LDA execution sequence diagram can be seen in Figure 8. 

 

Filter and examine failure data

Determine type of failure data

Perform system life

data analysis

Perform component life

data analysis

Time-to-first

failure of non-repairable 

components?

Time between failures

of repairable system?

Yes

Yes

No

No

Perform Weibull analysis,

plot data in rank order

Perform Laplace test,

plot data in chronological order

Obtain failure data

to be analysed

Estimate reliability characteristics

 
 

 

Figure 8: Life data analysis execution sequence diagram 
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3.3 COMPONENT LIFE DATA ANALYSIS 

LDA should be performed using an applicable software application but can also be performed 
using graphical methods, i.e. probability plotting. Since knowledge of graphical methods is 
beneficial to understand the results obtained from a software application, an introduction on 
probability plotting is included in this section. 
 

Weibull analysis is widely used in LDA due to the flexibility of the Weibull distribution (i.e. it can 
be used to approximate many other distributions), the easy interpretation of distribution 
parameters and their relation to the different parts of the bathtub curve. 

3.3.1 Two parameter Weibull distribution 

 
The reliability function for the two parameter Weibull distribution is: 

 

𝑅(𝑡) = 𝑒−(𝑡/𝜂)𝛽
   

 

where t = time 

 

   β = shape parameter 

 

   η = characteristic life = scale parameter 

         (or life at which 63.2% of population will have failed) 

 
 
The probability density function f(t), reliability function R(t) and hazard (or failure) rate λ(t) for 
different values of β is shown in Figure 9. 
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Figure 9: Two parameter Weibull distribution (for different values of β)  
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If the data can be modelled using the two parameter Weibull distribution, the reliability function 
can be transformed to plot as a straight line on specially prepared Weibull plotting paper. An 
example of Weibull probability paper is shown in Figure 10. The y-axis represents unreliability 
F(t) = 1 – R(t) and the x-axis represents time (or other usage parameter). Given the x and y-
value for each data point, all values can easily be plotted and a best-fitting straight line can be 

drawn through the data points. Parameter β can be determined as the slope of the line (it is not 
physically calculated, but traced on the paper) and parameter η can be determined as the time 
corresponding to 63.2% unreliability on the y-axis. 
 
Another parameter that is often used to specify or measure reliability is the B-life, which is the 
time by which a certain percent of the population can be expected to fail. A typical value is 10% 
(e.g. B10 life of 15 years is the same as 90% reliability for 15 year mission life). B-life can, 
therefore, easily be obtained from a Weibull analysis. 
 
Since data analysis is typically performed on a sample of the population, and to allow for the 
fact that each failure represents a point on a distribution, ranking of data is used to improve the 
accuracy of estimation. More commonly, mean ranks are used to plot symmetrical distributions, 
such as the normal distribution. Median ranking is the method most frequently used in 
probability plotting, particularly if the data is known not to be normally distributed. An example 
will illustrate the applicability of the mean rank in section 3.3.4 
 
The following methods can be used to perform mean and median ranking: 

 

Mean rank 𝑟𝑖 =
𝑖

𝑁+1
     Median rank ri = 𝑖−0.3

𝑁+0.4
 

 

where    i = failure order number 

 

     N  = sample size 

 

Table 1 shows mean and median ranks for a sample size of 5 items. 
 

Table 1: Mean and median ranking 

 
Failure order 

number 
No rank Mean rank Median rank 

1 20% 16.67% 12.96% 

2 40% 33.33% 31.48% 

3 60% 50.00% 50.00% 

4 80% 66.67% 68.52% 

5 100% 83.33% 87.04% 
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3.3.2 Three parameter Weibull distribution 

The reliability function for the three parameter Weibull distribution is:   

 

𝑅(𝑡) = 𝑒−(𝑡−/𝜂)𝛽
     

 

  where  t  = time 

   β = shape parameter 

   η = characteristic life = scale parameter 

          (or life at which 63.2% of population will have failed) 

   ϒ = location parameter = minimum life = failure free time 
Therefore, the three parameter Weibull distribution is useful to analyse failure data where 
failures only start after a finite time. Since the three parameter Weibull plot cannot be 
represented by a straight line on a Weibull plot, it necessitates the use of LDA software 
applications. 

 

 

 

Figure 10: Weibull probability paper 

Time to failure 

U
n

re
lia

b
ili

ty
, 

o
r 

c
u
m

u
la

ti
v
e

 d
is

tr
ib

u
ti
o

n
 

fu
n
c
ti
o

n
 F

(t
) 



CONTROLLED DISCLOSURE 

When downloaded from the EDMS, this document is uncontrolled and the responsibility rests with the user to ensure it is in line 
with the authorised version on the system. 

Life Data Analysis Guideline 

 

 

 

Unique Identifier: 240-49230067 

 Revision: 3 

 Page: 17 of 26 

 

3.3.3 Relationship of shape parameter with bathtub curve 

The shape parameter β determines the shape of the Weibull distribution, which enables the 
Weibull distribution to approximate a number of other failure distributions. Therefore, it can also 
be used to identify a specific part of the bathtub curve, as shown in Figure 11: 

 

β < 1 

 decreasing failure rate 

 infant mortality (or early failures) part of bathtub curve 

 workmanship or quality control related failures 

 

β  1 

 constant hazard (or failure) rate 

 useful life part of bathtub curve 

 random failures or externally induced failures 

 

 β > 1 

 increasing failure rate 

 wear-out part of bathtub curve 

 end-of-life failures 

 

β = 1, therefore, implies an exponential distribution and β  3 approximates the normal (or 
Gaussian) distribution. β values larger than 6 are not uncommon (and reflects accelerated or 
fast wear-out) but should be treated with suspicion (depending on the expected failure 
mechanism). 

 

 

 

 

Figure 11: Relationship between bathtub curve and Weibull shape parameter 
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3.3.4 EXAMPLE 1 

 
Determine the reliability function for a component for which the following field failure data is 
available (i.e. individual time-to-failure for each part): 
 

Table 2: Time-to-failure of individual items 

 

Item number Time-to-failure (h) 

1 300 

2 200 

3 350 

4 100 

5 250 

6 450 

7 150 

8 500 

9 400 

 
 
As shown in Table 3, the failure data should be ordered (i.e. sorted according to time-to-failure) 
and the median ranks determined. 
 

Table 3: Ordered time-to-failure data with median ranks 

 

Order 
number 

Time-to-failure (h) 
Median rank 

(sample size = 9) 

1 100 7% 

2 150 18% 

3 200 29% 

4 250 39% 

5 300 50% 

6 350 61% 

7 400 71% 

8 450 82% 

9 500 93% 
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These data points (i.e. time-to-failure vs. median rank) are shown in Figure 12. The distribution 
parameters are β = 2.06 and η = 344.76 hours (the gradient of the best fit line can be used as 

indicated at the top of Figure 10, to determine the beta parameter). With β  2 and η  350, the 
reliability at any time can thus be calculated using the following equation: 

 

 

 𝑅(𝑡) = 𝑒−(𝑡/350)2.0
 

 

 

For example, reliability for a mission time of 100 hours is 𝑅(100) = 𝑒−(100/350)2.0
= 0.92 (or 

92%). 

 

 

 

 

Figure 12: Weibull analysis 

  

F(t) = 63.2% 

η  350 hours 
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3.4 SYSTEM LIFE DATA ANALYSIS 

3.4.1 Stochastic point processes  

Situations in which discrete events occur randomly in a continuum (e.g. time) cannot be 
represented by a single continuous distribution function. Failures occurring in repairable 
systems (i.e. series of discrete events) is an example of a stochastic point process, which can 
be analysed using the statistics of event series. 
 
The Poisson distribution function describes the situation in which events occur randomly and at 
a constant average rate. This situation is described by a homogenous Poisson process (HPP). 
An HPP is a stationary process, since the distribution of the number of events in an interval of 
fixed length does not vary, regardless of when the interval is sampled. 
 
The Poisson distribution function is given by: 

 

𝑓(𝑥) =
(𝜆𝑥)𝜂

𝑛!
exp(−𝜆𝑥)                 𝑓𝑜𝑟 𝑛 = 0,1,2, …  

 
where λ is the mean rate of occurrence and λx is the expected number of events in (0, x). 
 
In a non-homogenous Poisson process (NHPP), the point process is non-stationary (rate of 
occurrence is a function of time) so that the distribution of the number of events in an interval of 

fixed length changes as x increases. Typically, the discrete events (e.g. failures) might occur at 
an increasing or decreasing rate. 
 
An essential condition of any homogenous Poisson process is that the probabilities of events 
occurring in any period are independent of what has occurred in preceding periods. An HPP 
describes a sequence of independently and identically exponentially distributed (IIED) random 
variables. A NHPP describes a sequence of random variables, which are neither independent 
nor identically distributed. 
 

3.4.2 Laplace test 

When analysing data from a stochastic point process, it is important to determine whether or not 
the process has a trend, specifically, to know whether a failure rate is increasing, decreasing or 
constant. This can be done by analysing the arrival values of the event series. The arrival 
values: 𝑥1, 𝑥2, …, 𝑥𝑛 are the values of the independent variables (e.g. time) from 𝑥 = 0 at which 
each event occurs. The interarrival values: 𝑋1, 𝑋2, …, 𝑋𝑛 are the intervals between successive 

events 1, 2, …, n, from 𝑥 = 0. The distinction between arrival and interarrival values can be 
seen in Figure 13. 
 
If 𝑥0 is the period of observation, then the test statistic for trend is the following: 

 

𝑈 =

Σ𝑥𝑖
n⁄ −

𝑥0
2⁄

𝑥0√1
12n⁄
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Figure 13: Arrival and interarrival values 

 
This is called the centroid test or the Laplace test and it compares the centroid of the observed 
arrival values with the mid-point of the period of observation. The Laplace test is one method to 
determine whether or not discrete events in a process have a trend: 
 

 If 𝑈 = 0, there is no trend 
(i.e. process is stationary) 

 If 𝑈 < 0, the trend is decreasing 
(i.e. interarrival values tend to become progressively larger) 

 If 𝑈 > 0, the trend is increasing 
(i.e. interarrival values tend to become progressively smaller) 

If the period of observation ends at an event, (n-1) is used instead of n, and the time to the last 
event is excluded from the summation Σ𝑥𝑖. When the Laplace value is greater than (less than) 
+1.96 (-1.96), it can be stated with at least 95% confidence (considering a two sided confidence 
interval) that there is a significant trend upward (downward). 
 

The centroid test is theoretically adequate if n  4, when the observation interval ends with an 

event and if n  3 when the interval is terminated at a predetermined time. The method is also 
called time series analysis. 
 
The Laplace test is a non-parametric analysis method and cannot quantify a trend, i.e. it can 
only identify a trend. If the actual rate of change in the trend is required, a parametric analysis 
method should be used, e.g. Crow (AMSAA) reliability growth model. 
  

  1 2 3  4  5 
Interarrival values Xi 

  1 2 3  4  5 

Arrival values xi 
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3.4.3 EXAMPLE 2 

Suppose the following interarrival times (in hours) were collected for a repairable system over a 
3,800 hour period: 

a) 1,600, 800, 400 and 200 hours 
b) 400, 1,600, 200 and 800 hours 
c) 200, 400, 800 and 1,600 hours 

These interarrival times can be converted to arrival times (i.e. start from the same point in time) 
and the Laplace value can be calculated. Table 4 shows arrival times for the first data set. 
 

Table 4: Arrival and interarrival times 

 

Interarrival 

times Xi 

Arrival  

times xi 

1,600 1,600 

800 2,400 

400 2,800 

200 3,000 

 
 

𝑈 =

Σ𝑥𝑖
n⁄ −

𝑥0
2⁄

𝑥0√1
12n⁄

 

 
   

𝑈 =

9,800
4⁄ − 3,800

2⁄

3,800√1
12 ∗ 4⁄

= 1,0028 

 
Therefore: 

 

a) For 1,600, 800, 400 and 200 hours, 𝑈 = +1.00  increasing failure rate 
 

b) For 400, 1,600, 200 and 800 hours, 𝑈 = 0.00  constant failure rate 
 

c) For 200, 400, 800 and 1,600 hours, 𝑈 = -1.09  decreasing failure rate 

 

The “mean” interarrival time of each data set is 750 hours, yet the patterns of failure of the data 
sets are completely different. 

Reference: TC Adams, The Laplace Test, 
http://kscsma.ksc.nasa.gov/Reliability/Documents/Laplace%20Test.pdf  

http://kscsma.ksc.nasa.gov/Reliability/Documents/Laplace%20Test.pdf
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3.4.4 EXAMPLE 3 

Determine if the following failure data represents a trend (i.e. is the failure rate increasing, 

constant or decreasing) for the following arrival values 𝑥𝑖  and interarrival values 𝑋𝑖 between 12 
successive failures (observation ends at the last failure). 
 

Table 5: Ordered arrival times 

 

Interarrival 
times Xi 

Arrival  
times xi 

175 175 

21 196 

108 304 

111 415 

89 504 

12 516 

102 618 

23 641 

38 679 

47 726 

14 740 

51 791 

 

 

𝑈 =

Σ𝑥𝑖
n⁄ −

𝑥0
2⁄

𝑥0√1
12n⁄

 

 

𝑈 =

5,514
11⁄ − 791

2⁄

791√1
(12x11)⁄

 = 1.54 

 

Therefore, the interarrival times are becoming shorter, i.e. the failure rate is increasing. The 
existence of a trend in the data indicates that the interarrival values are not independently and 
identically distributed (IID). This is an important point to consider in the analysis of failure data. 
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3.4.5 EXAMPLE 4 

For repairable systems, the distribution of times to first failures is far less important than the 
failure rate or rate of occurrence of failures of the system. Any repairable system may be 
considered as an assembly of parts, the parts being replaced when they fail. The system can be 
thought of as comprising of “sockets” into which non-repairable parts are fitted. As each part 
fails, a new part takes its place in the “socket”. Reliability of repairable systems is concerned 
with the pattern of successive failures of the “sockets”. 
 
Consider the data used in Example 3. The interarrival and (chronological ordered) arrival values 
between successive part failures are shown in columns 1 and 2 of Table 6. 
 

Table 6: Chronological ordered data 
 

1 2 3 

Xi Chronological xi Ranked xi 

175 175 12 

21 196 14 

108 304 21 

111 415 23 

89 504 38 

12 516 47 

102 618 51 

23 641 89 

38 679 102 

47 726 108 

14 740 111 

51 791 175 

 
 

Example 3 showed that the failure rate is increasing, since the interarrival values tend to 
become shorter (i.e. the interarrival values are not IID). If the centroid test was not performed, 
the data might be ordered using rank order and analysed using Weibull analysis. The results 
are shown as Line A on Figure 14 and show an apparent exponential life distribution. This is 
obviously a misleading result, since there is clearly an increasing failure rate trend for the 
“socket” when the data is studied chronologically. 
 
System reliability over a period of time can be derived by plotting the cumulative times to failure 
in chronological order (column 2) rather than in rank order. This is shown as Line B in Figure 
14. It is evident that Line A and Line B show different results in terms of both the shape 
parameter β and the scale parameter η. 
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Figure 14: Weibull plot for repairable system 

 
This example shows how important it is for failure data to be analysed correctly, depending on 
whether the analysis is concerned with the reliability of a non-repairable part or with a system 
consisting of “sockets” into which parts are fitted. A typical system, consisting of several parts 
that exhibit independent failure patterns, can be analysed in a similar manner (i.e. multisocket 
systems). 
 
If part times to failure (in a series system) are independently and identically exponentially 
distributed (IID exponential), the system will have a constant failure rate, which will be the sum 
of the reciprocals of the part mean times to failure: 
 

𝜆𝑠 = ∑
1

𝑥𝑖

𝑛

1

 

 
The assumption of IID exponential for parts times to failure within their sockets in a repairable 
system can be misleading. Refer to O’Connor, page 342 for more details on possible reasons. 

  

Line A Line B 
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