

Web Application Report

This report includes important security information about your web application.

Security Report
This report was created by HCL AppScan Standard 10.0.6
Scan started: 1/10/2022 5:24:54 PM

Table of Contents

Introduction
General Information
Login Settings

Summary
Issue Types
Vulnerable URLs
Fix Recommendations
Security Risks
Causes
WASC Threat Classification

Issues Sorted by Issue Type
Application Error 5

Link Injection (facilitates Cross-Site Request Forgery) 19

Phishing Through Frames 19

Reflected Cross Site Scripting 19

How to Fix
Application Error
Link Injection (facilitates Cross-Site Request Forgery)
Phishing Through Frames
Reflected Cross Site Scripting

Application Data
Visited URLs
Failed Requests

1/11/2022 1

Introduction
This report contains the results of a web application security scan performed by HCL AppScan Standard.

High severity issues: 5
Medium severity issues: 57
Total security issues included in the report: 62
Total security issues discovered in the scan: 114

General Information

Scan file name: survey_f_line_modified_10-01-2022

Scan started: 1/10/2022 5:24:54 PM

Test policy: Application-Only

Test optimization level: Fast

Host 10.163.30.226

Port 8088

Operating system: Unknown

Web server: Unknown

Application server: JavaAppServer

Login Settings

Login method: Recorded login

Concurrent logins: Enabled

In-session detection: Enabled

In-session pattern: null

Tracked or session ID cookies: JSESSIONID
JSESSIONID

Tracked or session ID parameters: jsoncallback
jsoncallback
jsoncallback
_
jsoncallback
jsoncallback
jsoncallback
jsoncallback

1/11/2022 2

Login sequence: http://10.163.30.226:8088/survey_f_line_audit/
http://10.163.30.226:8088/survey_f_line_audit/CaptchaTest
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/login_validation/?
jsoncallback=jQuery21102899024832830397_1641815324531
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_login_details/?
jsoncallback=jQuery21102899024832830397_1641815324531
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324531&_=164181532453
2
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324533&_=164181532453
4
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324535&_=164181532453
6
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324537&_=164181532453
8
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324539&_=164181532454
0
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324541&_=164181532454
2
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324543&_=164181532454
4
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails

1/11/2022 3

https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324545&_=164181532454
6
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324547&_=164181532454
8
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324549&_=164181532455
0
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getDistrictUniCodeDetails
https://edistricts.tn.gov.in:8443/survey_f_line_service/resources/sw
service/getTalukUnicode/15
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/get_firka_name/15/04/03?
jsoncallback=jQuery21102899024832830397_1641815324551&_=164181532455
2
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/getLoginRole/?
jsoncallback=jQuery21102899024832830397_1641815324553
http://10.163.30.226:8088/survey_f_line_audit/firka_surveyor_wf.jsp
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/getApp?jsoncallback=jQuery21107474938346486029_1641815341696
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/getApp_count/no/?
jsoncallback=jQuery21107474938346486029_1641815341696
http://10.163.30.226:8088/survey_f_line_audit/firka_surveyor_survey_
wise.jsp
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_
det/getAppDet_surveywise/?
jsoncallback=jQuery211040925141163246903_1641815402224

1/11/2022 4

TOC

TOC

Summary

Issue Types 4

Issue Type Number of Issues

H Application Error 5

M Link Injection (facilitates Cross-Site Request Forgery) 19

M Phishing Through Frames 19

M Reflected Cross Site Scripting 19

Vulnerable URLs 19

URL Number of Issues

H http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summar
y_App

6

H http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validati
on/

5

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surv
eywise

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp 3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_s
urveywise/

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_coun
t/no/

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_DIS_App 3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_TSLR_A
ppDet

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_na
me/15/04/03

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_de
tails/

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReas
on/

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report 3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getDISRemark
s

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemar
ks

3

1/11/2022 5

TOC

TOC

TOC

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemar
ks_returned

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getTSLR_Rem
arks

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_Report 3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_attachme
nts

3

M http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_ins 3

Fix Recommendations 2

Remediation Task Number of Issues

H Verify that parameter values are in their expected ranges and types. Do not output
debugging error messages and exceptions

5

M Review possible solutions for hazardous character injection 57

Security Risks 4

Risk Number of Issues

H It is possible to gather sensitive debugging information 5

M It is possible to persuade a naive user to supply sensitive information such as
username, password, credit card number, social security number etc.

38

M It may be possible to steal or manipulate customer session and cookies, which might
be used to impersonate a legitimate user, allowing the hacker to view or alter user
records, and to perform transactions as that user

38

M It is possible to upload, modify or delete web pages, scripts and files on the web server 19

Causes 7

Cause Number of Issues

H Proper bounds checking were not performed on incoming parameter values 5

H No validation was done in order to make sure that user input matches the data type
expected

5

M Sanitation of hazardous characters was not performed correctly on user input 38

M Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code
to the victim's browser, mostly using JavaScript. A vulnerable web application might
embed untrusted data in the output, without filtering or encoding it. In this way, an
attacker can inject a malicious script to the application, and the script will be returned in
the response. This will then run on the victim's browser.

19

M In particular, sanitization of hazardous characters was not performed correctly on user
input or untrusted data.

19

M In reflected attacks, an attacker tricks an end user into sending request containing 19

1/11/2022 6

#fix_50300
#fix_50300
#fix_52000

TOC

malicious code to a vulnerable Web server, which then reflects the attack back to the
end user's browser.

M The server receives the malicious data directly from the HTTP request and reflects it
back in the HTTP response. The most common method of sending malicious content is
adding it as a parameter in a URL that is posted publicly or e-mailed directly to the
victim. URLs that contain the malicious script constitute the core of many phishing
schemes, whereby the convinced victim visits a URL that refers to a vulnerable site.
The site then reflects the malicious content back to the victim, and then the content is
executed by the victim's browser.

19

WASC Threat Classification

Threat Number of Issues

Content Spoofing 38

Cross-site Scripting 19

Information Leakage 5

1/11/2022 7

http://projects.webappsec.org/Content-Spoofing
http://projects.webappsec.org/Cross-Site Scripting
http://projects.webappsec.org/Information-Leakage

TOC

Issues Sorted by Issue Type

H Application Error 5 TOC

Issue 1 of 5

Application Error
Severity: High

CVSS Score: 0.0

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/

Entity: ->"pass" (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter ->"pass" manipulated from: e5631953ffda425f2a62283ad1a27d06b126337455ca14124cad7dcd24f3f711 to: %00

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Raw Test Response:

...

Content-Type: application/json
Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "user_name": "**CONFIDENTIAL 0**",
 "pass": "\u0000"
}

HTTP/1.1 500
Content-Length: 3397
Location: /survey_f_line_service_audit/eror.jsp
Content-Language: en
Set-Cookie: JSESSIONID=0918DA4F1D08731AB91DF4751275A894; Path=/survey_f_line_service_audit; HttpOnly
Connection: close
Date: Tue, 11 Jan 2022 05:49:28 GMT
Content-Type: text/html;charset=utf-8

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">body
{font-family:Tahoma,Arial,sans-serif;} h1, h2, h3, b {color:white;background-colo
...

1/11/2022 8

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/
#fix_50300

TOC

TOC

Issue 2 of 5

Application Error
Severity: High

CVSS Score: 0.0

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/

Entity: ->"user_name" (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter ->"user_name" manipulated from: **CONFIDENTIAL 0** to: %00

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Issue 3 of 5

Raw Test Response:

...

Content-Type: application/json
Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "user_name": "\u0000",
 "pass": "e5631953ffda425f2a62283ad1a27d06b126337455ca14124cad7dcd24f3f711"
}

HTTP/1.1 500
Content-Length: 3397
Location: /survey_f_line_service_audit/eror.jsp
Content-Language: en
Set-Cookie: JSESSIONID=68F61C98F2FF1A13C290C83D4DF6D71E; Path=/survey_f_line_service_audit; HttpOnly
Connection: close
Date: Tue, 11 Jan 2022 05:49:23 GMT
Content-Type: text/html;charset=utf-8

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">body
{font-family:Tahoma,Arial,sans-serif;} h1, h2, h3, b {color:white;background-colo
...

1/11/2022 9

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/
#fix_50300

TOC

Application Error
Severity: High

CVSS Score: 0.0

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App

Entity: ->"frmDate" (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter ->"frmDate" manipulated from: 01/08/2021 to: %00

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Issue 4 of 5

Application Error
Severity: High

CVSS Score: 0.0

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App

Entity: ->"toDate" (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Raw Test Response:

...

Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "frmDate": "\u0000",
 "toDate": "10/01/2022",
 "search_code": "DATE"
}

HTTP/1.1 500
Connection: close
Content-Length: 2828
Content-Language: en
Set-Cookie: JSESSIONID=1DDEA8CE4B0C847F6A47117E6463E90C; Path=/survey_f_line_service_audit; HttpOnly
Date: Tue, 11 Jan 2022 06:17:42 GMT
Content-Type: text/html;charset=utf-8

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">body
{font-family:Tahoma,Arial,sans-serif;} h1, h2, h3, b {color:white;background-color:#525D76;} h1 {font-size:22px;} h2 {font-
size:16px;} h3 {font-size:14px;} p {font-size:12px;} a {color:black;} .line {height:1px;background-
color:#525D76;border:none;}</style></head><body><h1>HTTP Sta
...

1/11/2022 10

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App
#fix_50300
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App
#fix_50300

TOC

Difference: Parameter ->"toDate" manipulated from: 10/01/2022 to: %00

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Issue 5 of 5

Application Error
Severity: High

CVSS Score: 0.0

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App

Entity: ->"search_code" (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter ->"search_code" manipulated from: ->"search_code" to: __ORIG_VAL__.

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Raw Test Response:

...

Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "frmDate": "01/08/2021",
 "toDate": "\u0000",
 "search_code": "DATE"
}

HTTP/1.1 500
Connection: close
Content-Length: 2828
Content-Language: en
Set-Cookie: JSESSIONID=3A64CC6A1DA426E1247E8C7680961B5F; Path=/survey_f_line_service_audit; HttpOnly
Date: Tue, 11 Jan 2022 06:18:53 GMT
Content-Type: text/html;charset=utf-8

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">body
{font-family:Tahoma,Arial,sans-serif;} h1, h2, h3, b {color:white;background-color:#525D76;} h1 {font-size:22px;} h2 {font-
size:16px;} h3 {font-size:14px;} p {font-size:12px;} a {color:black;} .line {height:1px;background-
color:#525D76;border:none;}</style></head><body><h1>HTTP Sta
...

Raw Test Response:

...

Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "frmDate": "01/08/2021",
 "toDate": "10/01/2022",
 "search_code.": "DATE"

1/11/2022 11

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App
#fix_50300

}

HTTP/1.1 500
Connection: close
Content-Length: 2690
Content-Language: en
Set-Cookie: JSESSIONID=43D30DB67CDB419405F73D478783D88A; Path=/survey_f_line_service_audit; HttpOnly
Date: Tue, 11 Jan 2022 06:19:01 GMT
Content-Type: text/html;charset=utf-8

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">body
{font-family:Tahoma,Arial,sans-serif;} h1, h2, h3, b {color:white;background-color:#525D76;} h1 {font-size:22px;} h2 {font-
size:16px;} h3 {font-size:14px;} p {font-size:12px;} a {color:black;} .line {height:1px;background-
color:#525D76;border:none;}</style></head><body><h1>HTTP Sta
...

1/11/2022 12

TOC

TOC

M Link Injection (facilitates Cross-Site Request Forgery) 19 TOC

Issue 1 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF1430.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 2 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

1/11/2022 13

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App
#fix_52000

TOC

TOC

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF2572.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 3 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF1592.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 4 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF1664.html%22%3E

1/11/2022 14

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/
#fix_52000

TOC

TOC

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 5 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF1922.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 6 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_ins

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF1834.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

1/11/2022 15

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_ins
#fix_52000

TOC

TOC

Issue 7 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_attachments

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CA+HREF%3D%22%2FWF_XSRF2337.html%22%3EInjected+Link%3C%2FA%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 8 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_Report

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF2158.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

1/11/2022 16

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_attachments
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_Report
#fix_52000

TOC

TOC

TOC

Issue 9 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReason/

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF2806.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 10 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CA+HREF%3D%22%2FWF_XSRF3313.html%22%3EInjected+Link%3C%2FA%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 11 of 19

1/11/2022 17

http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReason/
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks
#fix_52000

TOC

TOC

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surveywise

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF3025.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 12 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getTSLR_Remarks

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF243.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 13 of 19

1/11/2022 18

http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surveywise
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getTSLR_Remarks
#fix_52000

TOC

TOC

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks_returned

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF3946.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 14 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getDISRemarks

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
%22%27%3E%3CA+HREF%3D%22%2FWF_XSRF3556.html%22%3EInjected+Link%3C%2FA%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 15 of 19

1/11/2022 19

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks_returned
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getDISRemarks
#fix_52000

TOC

TOC

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF4946.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 16 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF4366.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 17 of 19

1/11/2022 20

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp
#fix_52000

TOC

TOC

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_DIS_App

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF5239.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 18 of 19

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_details/

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF4725.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 19 of 19

1/11/2022 21

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_DIS_App
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_details/
#fix_52000

TOC

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_TSLR_AppDet

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF5400.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

M Phishing Through Frames 19 TOC

Issue 1 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D1431+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

1/11/2022 22

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_TSLR_AppDet
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/
#fix_52000

TOC

TOC

TOC

Issue 2 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D1670+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 3 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D1594+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 4 of 19

1/11/2022 23

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03
#fix_52000

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_ins

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D1837+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 5 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_Report

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D2160+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 6 of 19

1/11/2022 24

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_ins
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_Report
#fix_52000

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D1926+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 7 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_attachments

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D2342+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 8 of 19

1/11/2022 25

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_attachments
#fix_52000

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D2578+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 9 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReason/

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D2807+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 10 of 19

1/11/2022 26

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReason/
#fix_52000

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surveywise

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D3029+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 11 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D3318+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 12 of 19

1/11/2022 27

http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surveywise
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks
#fix_52000

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks_returned

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D3947+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 13 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getTSLR_Remarks

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%27%22%3E%3Ciframe+id%3D245+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishin
g.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 14 of 19

1/11/2022 28

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks_returned
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getTSLR_Remarks
#fix_52000

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getDISRemarks

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%27%22%3E%3Ciframe+id%3D3555+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 15 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_details/

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%27%22%3E%3Ciframe+id%3D4727+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 16 of 19

1/11/2022 29

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getDISRemarks
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_details/
#fix_52000

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%27%22%3E%3Ciframe+id%3D4368+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 17 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%27%22%3E%3Ciframe+id%3D4948+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 18 of 19

1/11/2022 30

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/
#fix_52000

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_TSLR_AppDet

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%27%22%3E%3Ciframe+id%3D5402+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 19 of 19

Phishing Through Frames
Severity: Medium

CVSS Score: 6.4

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_DIS_App

Entity: jsoncallback (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%27%22%3E%3Ciframe+id%3D5241+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishi
ng.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

M Reflected Cross Site Scripting 19 TOC

Issue 1 of 19

1/11/2022 31

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_TSLR_AppDet
#fix_52000
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_DIS_App
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Cimg+src%3Djavascript%3Aalert%281412%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 2 of 19

Raw Test Response:

...

Content-Type: application/json
Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "user_name": "**CONFIDENTIAL 0**",
 "pass": "e5631953ffda425f2a62283ad1a27d06b126337455ca14124cad7dcd24f3f711"
}

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Set-Cookie: JSESSIONID=5BB48F28C7809F3D295CF4B4A4FA26F9; Path=/survey_f_line_service_audit; HttpOnly
Date: Tue, 11 Jan 2022 05:49:25 GMT
Content-Type: text/plain

jQuery21105706580534857677_1641881499581({"Status_Code":1,"arr_success":
[{"role_id":39,"count":1,"id":402}]})
...

1/11/2022 32

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Ciframe+src%3Djavascript%3Aalert%281563%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 3 of 19

Raw Test Response:

...

Referer: http://10.163.30.226:8088/survey_f_line_audit/
Cookie: JSESSIONID=821E84BD69B91BD6C7A5FF8718D4CCC0
Connection: keep-alive
Host: 10.163.30.226:8088
Accept-Encoding: gzip
Accept: */*
Accept-Language: en-US

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Cache-Control: private
Date: Tue, 11 Jan 2022 05:49:47 GMT
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/plain

jQuery21105706580534857677_1641881499581<iframe src=javascript:alert(1563)>({"Status_Code":1,"arr_success":
[{"firka_desc":"T.Pet"}]})
...

1/11/2022 33

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_ins

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Ciframe+src%3Djavascript%3Aalert%281805%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 4 of 19

Raw Test Response:

...

signature: 52dsfsd
Content-Type: application/json
emp_value: sss
Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

%7B%22regn_no%22%3A%222021%2F16%2F000044%22%2C%22dist_code%22%3A%2215%22%2C%22taluk_code%22%3A%2204%22%2C%22village_code%22
%3A%22041%22%2C%22sur_no%22%3A%22667%22%2C%22sub_no%22%3A%225%22%2C%22inspec_date%22%3A%2216%2F01%2F2022%22%2C%22sms_text%2
2%3A%22ts%22%7D

HTTP/1.1 200
Access-Control-Allow-Headers: X-Requested-With,Host,User-Agent,Accept,Accept-Language,Accept-Encoding,Accept-Charset,Keep-
Alive,Connection,Referer,Origin
Access-Control-Max-Age: 3600
Connection: keep-alive
Allow-Control-Allow-Methods: POST,GET,OPTIONS
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 05:50:47 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Access-Control-Allow-Credentials: true

jQuery21105706580534857677_1641881499581<iframe src=javascript:alert(1805)>({"Status":"Saved
Successfully","Status_Code":"1"})
...

1/11/2022 34

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_ins
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Ciframe+src%3Djavascript%3Aalert%281895%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 5 of 19

Raw Test Response:

...

Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "regn_no": "2021/16/000003",
 "sur_no": "50",
 "sub_no": "2"
}

HTTP/1.1 200
Access-Control-Allow-Headers: X-Requested-With,Host,User-Agent,Accept,Accept-Language,Accept-Encoding,Accept-Charset,Keep-
Alive,Connection,Referer,Origin
Access-Control-Max-Age: 3600
Connection: keep-alive
Allow-Control-Allow-Methods: POST,GET,OPTIONS
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 05:51:01 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Access-Control-Allow-Credentials: true

jQuery21105706580534857677_1641881499581<iframe src=javascript:alert(1895)>({"arr_cnt":[],"Status_Code":1,"arr_success":
[{"email_id":"","inspect_det2":"","door":"18","inspect_det1":"","patta_attachment":"-
","doc_no":"","mobile_no":"8667383374","fh_name":"siva","gender_code":null,"sro_district_name":null,"applicant_name_t":null
,"district_name":"Perambalur","power_of_attorney_attachment":"-","street":"-","fh_relation":"Fa... Thurai","state_code":"-
","power_agent":"2"}]})
...

1/11/2022 35

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Ciframe+src%3Djavascript%3Aalert%281666%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 6 of 19

Raw Test Response:

...

Origin: http://10.163.30.226:8088
Referer: http://10.163.30.226:8088/survey_f_line_audit/firka_surveyor_wf.jsp
Accept: text/javascript, application/javascript, application/ecmascript, application/x-ecmascript, */*; q=0.01
signature: 12wrerwe
Content-Type: application/json
Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 05:50:14 GMT
Content-Type: text/plain

jQuery21105706580534857677_1641881499581<iframe src=javascript:alert(1666)>({"Status_Code":1,"arr_success":
[{"village_code":"Vettankulam","regn_no":"2021\/16\/000032","update_...

...

1/11/2022 36

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReason/

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Ciframe+src%3Djavascript%3Aalert%282778%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 7 of 19

Raw Test Response:

...

X-Requested-With: XMLHttpRequest
Connection: keep-alive
Referer: http://10.163.30.226:8088/survey_f_line_audit/view_report.jsp
Accept: text/javascript, application/javascript, application/ecmascript, application/x-ecmascript, */*; q=0.01
Content-Type: application/json
emp_value: null
Accept-Language: en-US

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Cache-Control: private
Date: Tue, 11 Jan 2022 06:18:53 GMT
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/plain

jQuery21105706580534857677_1641881499581<iframe src=javascript:alert(2778)> ([{"rName":"not qualified","rId":"1"},
{"rName":"not recommended","rId":"2"}])
...

1/11/2022 37

http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReason/
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Ciframe+src%3Djavascript%3Aalert%282573%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 8 of 19

Raw Test Response:

...

Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "frmDate": "01/08/2021",
 "toDate": "10/01/2022",
 "search_code": "DATE"
}

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Set-Cookie: JSESSIONID=F71575239DC9F5BAA3260918DE7D7464; Path=/survey_f_line_service_audit; HttpOnly
Date: Tue, 11 Jan 2022 06:17:57 GMT
Content-Type: text/plain

jQuery21105706580534857677_1641881499581<iframe src=javascript:alert(2573)>({"Status_Code":1,"arr_success":
[{"village_code":"Vettankulam","search_code":"DATE","regn_no":"2021\...

...

1/11/2022 38

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_Report

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Cimg+src%3Djavascript%3Aalert%282137%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 9 of 19

Raw Test Response:

...

emp_value: sss
Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

%7B%22regn_no%22%3A%222021%2F16%2F000003%22%2C%22dist_code%22%3A%2215%22%2C%22taluk_code%22%3A%2204%22%2C%22village_code%22
%3A%22041%22%2C%22remarks%22%3A%22test%22%2C%22rej_rea%22%3A%22%22%2C%22inspect_date1%22%3A%22%22%2C%22inspect_date2%22%3A%
22%20%22%2C%22inspect_date3%22%3A%22%20%22%2C%22inspec_det1%22%3A%22%22%2C%22inspec_det2%22%3A%22%20%22%2C%22inspec_det3%22
%3A%22%22%2C%22add_fee%22%3...

HTTP/1.1 200
Access-Control-Allow-Headers: X-Requested-With,Host,User-Agent,Accept,Accept-Language,Accept-Encoding,Accept-Charset,Keep-
Alive,Connection,Referer,Origin
Access-Control-Max-Age: 3600
Connection: keep-alive
Allow-Control-Allow-Methods: POST,GET,OPTIONS
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 05:51:50 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Access-Control-Allow-Credentials: true

jQuery21105706580534857677_1641881499581({"Status":"Some data problem","Status_Code":2})
...

1/11/2022 39

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_Report
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_attachments

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Ciframe+src%3Djavascript%3Aalert%282271%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 10 of 19

Raw Test Response:

...

 "land_parcel_type": "image/jpeg",
 "rej_doc": "",
 "rej_doc_fc": "",
 "rej_doc_name": "",
 "rej_doc_file": "",
 "rej_doc_type": "",
 "roleId": "39"
}

HTTP/1.1 200
Access-Control-Allow-Headers: X-Requested-With,Host,User-Agent,Accept,Accept-Language,Accept-Encoding,Accept-Charset,Keep-
Alive,Connection,Referer,Origin
Access-Control-Max-Age: 3600
Connection: keep-alive
Allow-Control-Allow-Methods: POST,GET,OPTIONS
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 06:14:34 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Access-Control-Allow-Credentials: true

jQuery21105706580534857677_1641881499581<iframe src=javascript:alert(2271)>({"Status":"Some data problem","Status_Code":2})
...

1/11/2022 40

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_attachments
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getTSLR_Remarks

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%27%22%2F%3E%3Ciframe+src%3Djavascript%3Aalert%28218%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 11 of 19

Raw Test Response:

...

Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "regn_no": "2021/16/000001",
 "sur_no": "50",
 "sub_no": "1"
}

HTTP/1.1 200
Access-Control-Allow-Headers: X-Requested-With,Host,User-Agent,Accept,Accept-Language,Accept-Encoding,Accept-Charset,Keep-
Alive,Connection,Referer,Origin
Access-Control-Max-Age: 3600
Connection: keep-alive
Allow-Control-Allow-Methods: POST,GET,OPTIONS
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 06:25:17 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Access-Control-Allow-Credentials: true

jQuery21103717863901571905_1641885146482'"/><iframe src=javascript:alert(218)>({"arr_cnt":[],"Status_Code":1,"arr_success":
[{"tslr_remarks":"dfs","tslr_recommend":"2","rej_reason":null}]})
...

1/11/2022 41

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getTSLR_Remarks
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surveywise

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Ciframe+src%3Djavascript%3Aalert%282999%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 12 of 19

Raw Test Response:

...

Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "reg_no": "2021/16/000001",
 "sur_no": "50",
 "sub_no": "1"
}

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 06:19:31 GMT
Content-Type: text/plain

jQuery21105706580534857677_1641881499581<iframe src=javascript:alert(2999)>({"Status_Code":1,"arr_success":

[{"village_code":"041","extent":"175.5","owner":"வினோம்குமா","patta_no":"NA","sub_division_no":"1","assessment_per_acre":"4.34","
district_code":"15","survey_no":"50","update_dt":"18-08-2021","taluk_code":"04","classification":"2"}]})
...

1/11/2022 42

http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surveywise
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getDISRemarks

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Ciframe+src%3Djavascript%3Aalert%283520%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 13 of 19

Raw Test Response:

...

Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "regn_no": "2021/16/000001",
 "sur_no": "50",
 "sub_no": "1"
}

HTTP/1.1 200
Access-Control-Allow-Headers: X-Requested-With,Host,User-Agent,Accept,Accept-Language,Accept-Encoding,Accept-Charset,Keep-
Alive,Connection,Referer,Origin
Access-Control-Max-Age: 3600
Connection: keep-alive
Allow-Control-Allow-Methods: POST,GET,OPTIONS
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 06:21:23 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Access-Control-Allow-Credentials: true

jQuery21105706580534857677_1641881499581<iframe src=javascript:alert(3520)>({"arr_cnt":[],"Status_Code":1,"arr_success":
[{"dis_remarks":"fg","dis_recommend":"1","rej_reason":null}]})
...

1/11/2022 43

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getDISRemarks
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Ciframe+src%3Djavascript%3Aalert%283295%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 14 of 19

Raw Test Response:

...

Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "regn_no": "2021/16/000001",
 "sur_no": "50",
 "sub_no": "1"
}

HTTP/1.1 200
Access-Control-Allow-Headers: X-Requested-With,Host,User-Agent,Accept,Accept-Language,Accept-Encoding,Accept-Charset,Keep-
Alive,Connection,Referer,Origin
Access-Control-Max-Age: 3600
Connection: keep-alive
Allow-Control-Allow-Methods: POST,GET,OPTIONS
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 06:20:34 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Access-Control-Allow-Credentials: true

jQuery21105706580534857677_1641881499581<iframe src=javascript:alert(3295)>({"arr_cnt":[],"Status_Code":1,"arr_success":
[{"bank_details":"","inpection_detail1":"approved","inpection_detail2":"","recommend":"1","challan_no":"","challan_date":nu
ll,"addl_paid":"","add_fee_flag":"N","inpection_detail3":"","inpection_date3":null,"inpection_date2":null,"remarks":"approv
ed","inpection_date":"30-08-2021","measurement_satisfy":"...
...

1/11/2022 44

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks_returned

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21105706580534857677_1641881499581 to:
jQuery21105706580534857677_1641881499581%3Cimg+src%3Dx+onerror%3Dalert%283935%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 15 of 19

Raw Test Response:

...

Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "regn_no": "2021/16/000001",
 "sur_no": "50",
 "sub_no": "1"
}

HTTP/1.1 200
Access-Control-Allow-Headers: X-Requested-With,Host,User-Agent,Accept,Accept-Language,Accept-Encoding,Accept-Charset,Keep-
Alive,Connection,Referer,Origin
Access-Control-Max-Age: 3600
Connection: keep-alive
Allow-Control-Allow-Methods: POST,GET,OPTIONS
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 06:22:59 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Access-Control-Allow-Credentials: true

jQuery21105706580534857677_1641881499581({"arr_cnt":[],"Status_Code":1,"arr_success":
[{"bank_details":"","inpection_detail1":"approved","inpection_detail2":"-
","recommend":"1","challan_no":"","challan_date":null,"addl_paid":"","add_fee_flag":"N","inpection_date1":"29-10-
2021","inpection_detail3":"-","inpection_date3":null,"inpection_date2":null,"remarks":",m.,","inpection_date":"29-10-
2021","...
...

1/11/2022 45

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks_returned
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%3Ciframe+src%3Djavascript%3Aalert%284341%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 16 of 19

Raw Test Response:

...

hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "ins_date": "returned",
 "login_districtCode": "15",
 "login_taluk_code": "04",
 "login_firka_code": "03"
}

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 07:03:18 GMT
Content-Type: text/plain

jQuery21103717863901571905_1641885146482<iframe src=javascript:alert(4341)>({"Issue":"Data Not Available.
","Status_Code":2})
...

1/11/2022 46

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%3Cimg+src%3Dx+onerror%3Dalert%284929%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 17 of 19

Raw Test Response:

...

Content-Type: application/json
Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "reg_no": "2021/16/000049",
 "page_code": "2"
}

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 07:11:19 GMT
Content-Type: text/plain

jQuery21103717863901571905_1641885146482({"Status_Code":1,"arr_success":
[{"village_code":"Vettankulam","sub_division_no":"1","survey_no":"50","regn_no":"2021\/16\/000049","update_dt_str":"08-10-
2021","applicant_name":"ganesh"}]})
...

1/11/2022 47

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_details/

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%3Ciframe+src%3Djavascript%3Aalert%284700%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 18 of 19

Raw Test Response:

...

Content-Type: application/json
Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "user_name": "**CONFIDENTIAL 0**",
 "role_id": "39"
}

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 07:08:57 GMT
Content-Type: text/plain

jQuery21103717863901571905_1641885146482<iframe src=javascript:alert(4700)>({"Status_Code":1,"arr_success":
[{"districtCode":"15","firka_code":"03","taluk_code":"04"},{"districtCode":"15","firka_code":"03","taluk_code":"04"},
{"districtCode":"15","firka_code":"03","taluk_code":"04"},{"districtCode":"15","firka_code":"03","taluk_code":"04"},
{"districtCode":"15","firka_code":"03","taluk_code":"04"},{"districtCode":"15","fir...
...

1/11/2022 48

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_details/
#fix_52000

TOC

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_DIS_App

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%3Ciframe+src%3Djavascript%3Aalert%285214%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Issue 19 of 19

Raw Test Response:

...

Content-Type: application/json
Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "login_districtCode": "15",
 "login_taluk_code": "04"
}

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 07:14:51 GMT
Content-Type: text/plain

jQuery21103717863901571905_1641885146482<iframe src=javascript:alert(5214)>({"Status_Code":1,"arr_success":
[{"village_code":"Vettankulam","regn_no":"2021\/16\/000006","update_...

...

1/11/2022 49

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_DIS_App
#fix_52000

Reflected Cross Site Scripting
Severity: Medium

CVSS Score: 7.5

URL: http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_TSLR_AppDet

Entity: jsoncallback (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter jsoncallback manipulated from: jQuery21103717863901571905_1641885146482 to:
jQuery21103717863901571905_1641885146482%3Ciframe+src%3Djavascript%3Aalert%285375%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Raw Test Response:

...

Content-Type: application/json
Accept-Language: en-US
hmac: webform@n!c:7Ak3NN578krKrzAYTGnQVg==

{
 "login_districtCode": "15",
 "login_taluk_code": "04"
}

HTTP/1.1 200
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20
Date: Tue, 11 Jan 2022 07:16:53 GMT
Content-Type: text/plain

jQuery21103717863901571905_1641885146482<iframe src=javascript:alert(5375)>({"Status_Code":1,"arr_success":
[{"village_code":"Vettankulam","regn_no":"2021\/16\/000027","update_dt_str":"27-08-2021","applicant_name":"divya"},
{"village_code":"Vettankulam","regn_no":"2021\/16\/000033","update_dt_str":"27-08-2021","applicant_name":"ganesh"}]})
...

1/11/2022 50

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_TSLR_AppDet
#fix_52000

TOC

How to Fix

Application Error

Cause:
Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Risk:
It is possible to gather sensitive debugging information
If an attacker probes the application by forging a request that contains parameters or parameter values other than the ones expected by the
application (examples are listed below), the application may enter an undefined state that makes it vulnerable to attack. The attacker can gain
useful information from the application's response to this request, which information may be exploited to locate application weaknesses.
For example, if the parameter field should be an apostrophe-quoted string (e.g. in an ASP script or SQL query), the injected apostrophe
symbol will prematurely terminate the string stream, thus changing the normal flow/syntax of the script.
Another cause of vital information being revealed in error messages, is when the scripting engine, web server, or database are misconfigured.
Here are some different variants:
[1] Remove parameter
[2] Remove parameter value
[3] Set parameter value to null
[4] Set parameter value to a numeric overflow (+/- 99999999)
[5] Set parameter value to hazardous characters, such as ' " \' \") ;
[6] Append some string to a numeric parameter value
[7] Append "." (dot) or "[]" (angle brackets) to the parameter name

Affected Products:
This issue may affect different types of products.

1/11/2022 51

Fix Recommendation:

General

[1] Check incoming requests for the presence of all expected parameters and values. When a parameter is missing, issue a proper error
message or use default values.
[2] The application should verify that its input consists of valid characters (after decoding). For example, an input value containing the null byte
(encoded as %00), apostrophe, quotes, etc. should be rejected.
[3] Enforce values in their expected ranges and types. If your application expects a certain parameter to have a value from a certain set, then the
application should ensure that the value it receives indeed belongs to the set. For example, if your application expects a value in the range
10..99, then it should make sure that the value is indeed numeric, and that its value is in 10..99.
[4] Verify that the data belongs to the set offered to the client.
[5] Do not output debugging error messages and exceptions in a production environment.
In order to disable debugging in ASP.NET, edit your web.config file to contain the following:
<compilation
debug="false"
/>
For more information, see "HOW TO: Disable Debugging for ASP.NET Applications" in:
http://support.microsoft.com/default.aspx?scid=kb;en-us;815157
You can add input validation to Web Forms pages by using validation controls. Validation controls provide an easy-to-use mechanism for all
common types of standard validation (for example, testing for valid dates or values within a range), plus ways to provide custom-written
validation. In addition, validation controls allow you to completely customize how error information is displayed to the user. Validation controls
can be used with any controls that are processed in a Web Forms page's class file, including both HTML and Web server controls.
To make sure that all the required parameters exist in a request, use the "RequiredFieldValidator" validation control. This control ensures that
the user does not skip an entry in the web form.
To make sure user input contains only valid values, you can use one of the following validation controls:
[1] "RangeValidator": checks that a user's entry (value) is between specified lower and upper boundaries. You can check ranges within pairs of
numbers, alphabetic characters, and dates.
[2] "RegularExpressionValidator": checks that the entry matches a pattern defined by a regular expression. This type of validation allows you to
check for predictable sequences of characters, such as those in social security numbers, e-mail addresses, telephone numbers, postal codes,
and so on.
Important note: validation controls do not block user input or change the flow of page processing; they only set an error state, and produce error
messages. It is the programmer's responsibility to test the state of the controls in the code before performing further application-specific actions.
There are two ways to check for user input validity:
1. Test for a general error state:
In your code, test the page's IsValid property. This property rolls up the values of the IsValid properties of all the validation controls on the page
(using a logical AND). If one of the validation controls is set to invalid, the page's property will return false.
2. Test for the error state of individual controls:
Loop through the page's Validators collection, which contains references to all the validation controls. You can then examine the IsValid property
of each validation control.
** Input Data Validation:
While data validations may be provided as a user convenience on the client-tier, data validation must be performed on the server-tier using
Servlets. Client-side validations are inherently insecure because they can be easily bypassed, e.g. by disabling Javascript.
A good design usually requires the web application framework to provide server-side utility routines to validate the following:
[1] Required field
[2] Field data type (all HTTP request parameters are Strings by default)
[3] Field length
[4] Field range
[5] Field options
[6] Field pattern
[7] Cookie values
[8] HTTP Response
A good practice is to implement the above routine as static methods in a "Validator" utility class. The following sections describe an example
validator class.
[1] Required field
Always check that the field is not null and its length is greater than zero, excluding leading and trailing white spaces.
Example of how to validate required fields:
// Java example to validate required fields public Class Validator { ... public static boolean validateRequired(String value) { boolean isFieldValid =
false; if (value != null && value.trim().length() > 0) { isFieldValid = true; } return isFieldValid; } ... } ... String fieldValue =
request.getParameter("fieldName"); if (Validator.validateRequired(fieldValue)) { // fieldValue is valid, continue processing request ... }
[2] Field data type
In web applications, input parameters are poorly typed. For example, all HTTP request parameters or cookie values are of type String. The
developer is responsible for verifying the input is of the correct data type. Use the Java primitive wrapper classes to check if the field value can
be safely converted to the desired primitive data type.
Example of how to validate a numeric field (type int):

1/11/2022 52

http://support.microsoft.com/default.aspx?scid=kb;en-us;815157

// Java example to validate that a field is an int number public Class Validator { ... public static boolean validateInt(String value) { boolean
isFieldValid = false; try { Integer.parseInt(value); isFieldValid = true; } catch (Exception e) { isFieldValid = false; } return isFieldValid; } ... } ... //
check if the HTTP request parameter is of type int String fieldValue = request.getParameter("fieldName"); if (Validator.validateInt(fieldValue)) { //
fieldValue is valid, continue processing request ... }
A good practice is to convert all HTTP request parameters to their respective data types. For example, store the "integerValue" of a request
parameter in a request attribute and use it as shown in the following example:
// Example to convert the HTTP request parameter to a primitive wrapper data type // and store this value in a request attribute for further
processing String fieldValue = request.getParameter("fieldName"); if (Validator.validateInt(fieldValue)) { // convert fieldValue to an Integer Integer
integerValue = Integer.getInteger(fieldValue); // store integerValue in a request attribute request.setAttribute("fieldName", integerValue); } ... //
Use the request attribute for further processing Integer integerValue = (Integer)request.getAttribute("fieldName"); ...
The primary Java data types that the application should handle:
- Byte
- Short
- Integer
- Long
- Float
- Double
- Date
[3] Field length
Always ensure that the input parameter (whether HTTP request parameter or cookie value) is bounded by a minimum length and/or a maximum
length.
Example to validate that the length of the userName field is between 8 and 20 characters:
// Example to validate the field length public Class Validator { ... public static boolean validateLength(String value, int minLength, int maxLength)
{ String validatedValue = value; if (!validateRequired(value)) { validatedValue = ""; } return (validatedValue.length() >= minLength &&
validatedValue.length() <= maxLength); } ... } ... String userName = request.getParameter("userName"); if
(Validator.validateRequired(userName)) { if (Validator.validateLength(userName, 8, 20)) { // userName is valid, continue further processing ... } }
[4] Field range
Always ensure that the input parameter is within a range as defined by the functional requirements.
Example to validate that the input numberOfChoices is between 10 and 20:
// Example to validate the field range public Class Validator { ... public static boolean validateRange(int value, int min, int max) { return (value >=
min && value <= max); } ... } ... String fieldValue = request.getParameter("numberOfChoices"); if (Validator.validateRequired(fieldValue)) { if
(Validator.validateInt(fieldValue)) { int numberOfChoices = Integer.parseInt(fieldValue); if (Validator.validateRange(numberOfChoices, 10, 20)) {
// numberOfChoices is valid, continue processing request ... } } }
[5] Field options
Often, the web application presents the user with a set of options to choose from, e.g. using the SELECT HTML tag, but fails to perform server-
side validation to ensure that the selected value is one of the allowed options. Remember that a malicious user can easily modify any option
value. Always validate the selected user value against the allowed options as defined by the functional requirements.
Example to validate the user selection against a list of allowed options:
// Example to validate user selection against a list of options public Class Validator { ... public static boolean validateOption(Object[] options,
Object value) { boolean isValidValue = false; try { List list = Arrays.asList(options); if (list != null) { isValidValue = list.contains(value); } } catch
(Exception e) { } return isValidValue; } ... } ... // Allowed options String[] options = {"option1", "option2", "option3"); // Verify that the user selection
is one of the allowed options String userSelection = request.getParameter("userSelection"); if (Validator.validateOption(options, userSelection)) {
// valid user selection, continue processing request ... }
[6] Field pattern
Always check that the user input matches a pattern as defined by the functionality requirements. For example, if the userName field should only
allow alpha-numeric characters, case insensitive, then use the following regular expression:
^[a-zA-Z0-9]*$
Java 1.3 or earlier versions do not include any regular expression packages. Apache Regular Expression Package (see Resources below) is
recommended for use with Java 1.3 to resolve this lack of support.
Example to perform regular expression validation:
// Example to validate that a given value matches a specified pattern // using the Apache regular expression package import
org.apache.regexp.RE; import org.apache.regexp.RESyntaxException; public Class Validator { ... public static boolean matchPattern(String
value, String expression) { boolean match = false; if (validateRequired(expression)) { RE r = new RE(expression); match = r.match(value); }
return match; } ... } ... // Verify that the userName request parameter is alpha-numeric String userName = request.getParameter("userName"); if
(Validator.matchPattern(userName, "^[a-zA-Z0-9]*$")) { // userName is valid, continue processing request ... }
Java 1.4 introduced a new regular expression package (java.util.regex). Here is a modified version of Validator.matchPattern using the new Java
1.4 regular expression package:
// Example to validate that a given value matches a specified pattern // using the Java 1.4 regular expression package import
java.util.regex.Pattern; import java.util.regexe.Matcher; public Class Validator { ... public static boolean matchPattern(String value, String
expression) { boolean match = false; if (validateRequired(expression)) { match = Pattern.matches(expression, value); } return match; } ... }
[7] Cookie value
Use the javax.servlet.http.Cookie object to validate the cookie value. The same validation rules (described above) apply to cookie values
depending on the application requirements, e.g. validate a required value, validate length, etc.
Example to validate a required cookie value:
// Example to validate a required cookie value // First retrieve all available cookies submitted in the HTTP request Cookie[] cookies =
request.getCookies(); if (cookies != null) { // find the "user" cookie for (int i=0; i<cookies.length; ++i) { if (cookies[i].getName().equals("user")) { //

1/11/2022 53

validate the cookie value if (Validator.validateRequired(cookies[i].getValue()) { // valid cookie value, continue processing request ... } } } }
[8] HTTP Response
[8-1] Filter user input
To guard the application against cross-site scripting, sanitize HTML by converting sensitive characters to their corresponding character entities.
These are the HTML sensitive characters:
< > " ' % ;) (& +
Example to filter a specified string by converting sensitive characters to their corresponding character entities:
// Example to filter sensitive data to prevent cross-site scripting public Class Validator { ... public static String filter(String value) { if (value == null)
{ return null; } StringBuffer result = new StringBuffer(value.length()); for (int i=0; i<value.length(); ++i) { switch (value.charAt(i)) { case '<':
result.append("<"); break; case '>': result.append(">"); break; case '"': result.append("""); break; case '\'': result.append("'"); break; case '%':
result.append("%"); break; case ';': result.append(";"); break; case '(': result.append("("); break; case ')': result.append(")"); break; case '&':
result.append("&"); break; case '+': result.append("+"); break; default: result.append(value.charAt(i)); break; } return result; } ... } ... // Filter the
HTTP response using Validator.filter PrintWriter out = response.getWriter(); // set output response out.write(Validator.filter(response));
out.close();
The Java Servlet API 2.3 introduced Filters, which supports the interception and transformation of HTTP requests or responses.
Example of using a Servlet Filter to sanitize the response using Validator.filter:
// Example to filter all sensitive characters in the HTTP response using a Java Filter. // This example is for illustration purposes since it will filter
all content in the response, including HTML tags! public class SensitiveCharsFilter implements Filter { ... public void doFilter(ServletRequest
request, ServletResponse response, FilterChain chain) throws IOException, ServletException { PrintWriter out = response.getWriter();
ResponseWrapper wrapper = new ResponseWrapper((HttpServletResponse)response); chain.doFilter(request, wrapper); CharArrayWriter caw
= new CharArrayWriter(); caw.write(Validator.filter(wrapper.toString())); response.setContentType("text/html");
response.setContentLength(caw.toString().length()); out.write(caw.toString()); out.close(); } ... public class CharResponseWrapper extends
HttpServletResponseWrapper { private CharArrayWriter output; public String toString() { return output.toString(); } public
CharResponseWrapper(HttpServletResponse response){ super(response); output = new CharArrayWriter(); } public PrintWriter getWriter(){
return new PrintWriter(output); } } } }
[8-2] Secure the cookie
When storing sensitive data in a cookie, make sure to set the secure flag of the cookie in the HTTP response, using Cookie.setSecure(boolean
flag) to instruct the browser to send the cookie using a secure protocol, such as HTTPS or SSL.
Example to secure the "user" cookie:
// Example to secure a cookie, i.e. instruct the browser to // send the cookie using a secure protocol Cookie cookie = new Cookie("user",
"sensitive"); cookie.setSecure(true); response.addCookie(cookie);
RECOMMENDED JAVA TOOLS
The two main Java frameworks for server-side validation are:
[1] Jakarta Commons Validator (integrated with Struts 1.1)
The Jakarta Commons Validator is a powerful framework that implements all the above data validation requirements. These rules are configured
in an XML file that defines input validation rules for form fields. Struts supports output filtering of dangerous characters in the [8] HTTP
Response by default on all data written using the Struts 'bean:write' tag. This filtering may be disabled by setting the 'filter=false' flag.
Struts defines the following basic input validators, but custom validators may also be defined:
required: succeeds if the field contains any characters other than white space.
mask: succeeds if the value matches the regular expression given by the mask attribute.
range: succeeds if the value is within the values given by the min and max attributes ((value >= min) & (value <= max)).
maxLength: succeeds if the field is length is less than or equal to the max attribute.
minLength: succeeds if the field is length is greater than or equal to the min attribute.
byte, short, integer, long, float, double: succeeds if the value can be converted to the corresponding primitive.
date: succeeds if the value represents a valid date. A date pattern may be provided.
creditCard: succeeds if the value could be a valid credit card number.
e-mail: succeeds if the value could be a valid e-mail address.
Example to validate the userName field of a loginForm using Struts Validator:
<form-validation> <global> ... <validator name="required" classname="org.apache.struts.validator.FieldChecks" method="validateRequired"
msg="errors.required"> </validator> <validator name="mask" classname="org.apache.struts.validator.FieldChecks" method="validateMask"
msg="errors.invalid"> </validator> ... </global> <formset> <form name="loginForm"> <!-- userName is required and is alpha-numeric case
insensitive --> <field property="userName" depends="required,mask"> <!-- message resource key to display if validation fails --> <msg
name="mask" key="login.userName.maskmsg"/> <arg0 key="login.userName.displayname"/> <var> <var-name>mask</var-name> <var-
value>^[a-zA-Z0-9]*$</var-value> </var> </field> ... </form> ... </formset> </form-validation>
[2] JavaServer Faces Technology
JavaServer Faces Technology is a set of Java APIs (JSR 127) to represent UI components, manage their state, handle events and input
validation.
The JavaServer Faces API implements the following basic validators, but custom validators may be defined:
validate_doublerange: registers a DoubleRangeValidator on a component
validate_length: registers a LengthValidator on a component
validate_longrange: registers a LongRangeValidator on a component
validate_required: registers a RequiredValidator on a component
validate_stringrange: registers a StringRangeValidator on a component
validator: registers a custom Validator on a component
The JavaServer Faces API defines the following UIInput and UIOutput Renderers (Tags):
input_date: accepts a java.util.Date formatted with a java.text.Date instance

1/11/2022 54

output_date: displays a java.util.Date formatted with a java.text.Date instance
input_datetime: accepts a java.util.Date formatted with a java.text.DateTime instance
output_datetime: displays a java.util.Date formatted with a java.text.DateTime instance
input_number: displays a numeric data type (java.lang.Number or primitive), formatted with a java.text.NumberFormat
output_number: displays a numeric data type (java.lang.Number or primitive), formatted with a java.text.NumberFormat
input_text: accepts a text string of one line.
output_text: displays a text string of one line.
input_time: accepts a java.util.Date, formatted with a java.text.DateFormat time instance
output_time: displays a java.util.Date, formatted with a java.text.DateFormat time instance
input_hidden: allows a page author to include a hidden variable in a page
input_secret: accepts one line of text with no spaces and displays it as a set of asterisks as it is typed
input_textarea: accepts multiple lines of text
output_errors: displays error messages for an entire page or error messages associated with a specified client identifier
output_label: displays a nested component as a label for a specified input field
output_message: displays a localized message
Example to validate the userName field of a loginForm using JavaServer Faces:
<%@ taglib uri="https://docs.oracle.com/javaee/6/tutorial/doc/glxce.html" prefix="h" %> <%@ taglib uri="http://mrbool.com/how-to-create-a-
login-validation-with-jsf-java-server-faces/27046" prefix="f" %> ... <jsp:useBean id="UserBean" class="myApplication.UserBean"
scope="session" /> <f:use_faces> <h:form formName="loginForm" > <h:input_text id="userName" size="20"
modelReference="UserBean.userName"> <f:validate_required/> <f:validate_length minimum="8" maximum="20"/> </h:input_text> <!-- display
errors if present --> <h:output_errors id="loginErrors" clientId="userName"/> <h:command_button id="submit" label="Submit"
commandName="submit" /><p> </h:form> </f:use_faces>
REFERENCES
Java API 1.3 -
https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
Java API 1.4 -
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
Java Servlet API 2.3 -
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
Java Regular Expression Package -
http://jakarta.apache.org/regexp/
Jakarta Validator -
http://jakarta.apache.org/commons/validator/
JavaServer Faces Technology -
http://www.javaserverfaces.org/
** Error Handling:
Many J2EE web application architectures follow the Model View Controller (MVC) pattern. In this pattern a Servlet acts as a Controller. A Servlet
delegates the application processing to a JavaBean such as an EJB Session Bean (the Model). The Servlet then forwards the request to a JSP
(View) to render the processing results. Servlets should check all input, output, return codes, error codes and known exceptions to ensure that
the expected processing actually occurred.
While data validation protects applications against malicious data tampering, a sound error handling strategy is necessary to prevent the
application from inadvertently disclosing internal error messages such as exception stack traces. A good error handling strategy addresses the
following items:
[1] Defining Errors
[2] Reporting Errors
[3] Rendering Errors
[4] Error Mapping
[1] Defining Errors
Hard-coded error messages in the application layer (e.g. Servlets) should be avoided. Instead, the application should use error keys that map to
known application failures. A good practice is to define error keys that map to validation rules for HTML form fields or other bean properties. For
example, if the "user_name" field is required, is alphanumeric, and must be unique in the database, then the following error keys should be
defined:
(a) ERROR_USERNAME_REQUIRED: this error key is used to display a message notifying the user that the "user_name" field is required;
(b) ERROR_USERNAME_ALPHANUMERIC: this error key is used to display a message notifying the user that the "user_name" field should be
alphanumeric;
(c) ERROR_USERNAME_DUPLICATE: this error key is used to display a message notifying the user that the "user_name" value is a duplicate
in the database;
(d) ERROR_USERNAME_INVALID: this error key is used to display a generic message notifying the user that the "user_name" value is invalid;
A good practice is to define the following framework Java classes which are used to store and report application errors:
- ErrorKeys: defines all error keys
// Example: ErrorKeys defining the following error keys: // - ERROR_USERNAME_REQUIRED // - ERROR_USERNAME_ALPHANUMERIC // -
ERROR_USERNAME_DUPLICATE // - ERROR_USERNAME_INVALID // ... public Class ErrorKeys { public static final String
ERROR_USERNAME_REQUIRED = "error.username.required"; public static final String ERROR_USERNAME_ALPHANUMERIC =
"error.username.alphanumeric"; public static final String ERROR_USERNAME_DUPLICATE = "error.username.duplicate"; public static final
String ERROR_USERNAME_INVALID = "error.username.invalid"; ... }
- Error: encapsulates an individual error

1/11/2022 55

https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/commons/validator/
http://www.javaserverfaces.org/

// Example: Error encapsulates an error key. // Error is serializable to support code executing in multiple JVMs. public Class Error implements
Serializable { // Constructor given a specified error key public Error(String key) { this(key, null); } // Constructor given a specified error key and
array of placeholder objects public Error(String key, Object[] values) { this.key = key; this.values = values; } // Returns the error key public String
getKey() { return this.key; } // Returns the placeholder values public Object[] getValues() { return this.values; } private String key = null; private
Object[] values = null; }
- Errors: encapsulates a Collection of errors
// Example: Errors encapsulates the Error objects being reported to the presentation layer. // Errors are stored in a HashMap where the key is
the bean property name and value is an // ArrayList of Error objects. public Class Errors implements Serializable { // Adds an Error object to the
Collection of errors for the specified bean property. public void addError(String property, Error error) { ArrayList propertyErrors =
(ArrayList)errors.get(property); if (propertyErrors == null) { propertyErrors = new ArrayList(); errors.put(property, propertyErrors); }
propertyErrors.put(error); } // Returns true if there are any errors public boolean hasErrors() { return (errors.size > 0); } // Returns the Errors for
the specified property public ArrayList getErrors(String property) { return (ArrayList)errors.get(property); } private HashMap errors = new
HashMap(); }
Using the above framework classes, here is an example to process validation errors of the "user_name" field:
// Example to process validation errors of the "user_name" field. Errors errors = new Errors(); String userName =
request.getParameter("user_name"); // (a) Required validation rule if (!Validator.validateRequired(userName)) { errors.addError("user_name",
new Error(ErrorKeys.ERROR_USERNAME_REQUIRED)); } // (b) Alpha-numeric validation rule else if (!Validator.matchPattern(userName, "^[a-
zA-Z0-9]*$")) { errors.addError("user_name", new Error(ErrorKeys.ERROR_USERNAME_ALPHANUMERIC)); } else { // (c) Duplicate check
validation rule // We assume that there is an existing UserValidationEJB session bean that implements // a checkIfDuplicate() method to verify if
the user already exists in the database. try { ... if (UserValidationEJB.checkIfDuplicate(userName)) { errors.addError("user_name", new
Error(ErrorKeys.ERROR_USERNAME_DUPLICATE)); } } catch (RemoteException e) { // log the error logger.error("Could not validate user for
specified userName: " + userName); errors.addError("user_name", new Error(ErrorKeys.ERROR_USERNAME_DUPLICATE); } } // set the
errors object in a request attribute called "errors" request.setAttribute("errors", errors); ...
[2] Reporting Errors
There are two ways to report web-tier application errors:
(a) Servlet Error Mechanism
(b) JSP Error Mechanism
[2-a] Servlet Error Mechanism
A Servlet may report errors by:
- forwarding to the input JSP (having already stored the errors in a request attribute), OR
- calling response.sendError with an HTTP error code argument, OR
- throwing an exception
It is good practice to process all known application errors (as described in section [1]), store them in a request attribute, and forward to the input
JSP. The input JSP should display the error messages and prompt the user to re-enter the data. The following example illustrates how to
forward to an input JSP (userInput.jsp):
// Example to forward to the userInput.jsp following user validation errors RequestDispatcher rd =
getServletContext().getRequestDispatcher("/user/userInput.jsp"); if (rd != null) { rd.forward(request, response); }
If the Servlet cannot forward to a known JSP page, the second option is to report an error using the response.sendError method with
HttpServletResponse.SC_INTERNAL_SERVER_ERROR (status code 500) as argument. Refer to the javadoc of
javax.servlet.http.HttpServletResponse for more details on the various HTTP status codes.
Example to return a HTTP error:
// Example to return a HTTP error code RequestDispatcher rd = getServletContext().getRequestDispatcher("/user/userInput.jsp"); if (rd == null) {
// messages is a resource bundle with all message keys and values
response.sendError(HttpServletResponse.SC_INTERNAL_SERVER_ERROR,
messages.getMessage(ErrorKeys.ERROR_USERNAME_INVALID)); }
As a last resort, Servlets can throw an exception, which must be a subclass of one of the following classes:
- RuntimeException
- ServletException
- IOException
[2-b] JSP Error Mechanism
JSP pages provide a mechanism to handle runtime exceptions by defining an errorPage directive as shown in the following example:
<%@ page errorPage="/errors/userValidation.jsp" %>
Uncaught JSP exceptions are forwarded to the specified errorPage, and the original exception is set in a request parameter called
javax.servlet.jsp.jspException. The error page must include a isErrorPage directive as shown below:
<%@ page isErrorPage="true" %>
The isErrorPage directive causes the "exception" variable to be initialized to the exception object being thrown.
[3] Rendering Errors
The J2SE Internationalization APIs provide utility classes for externalizing application resources and formatting messages including:
(a) Resource Bundles
(b) Message Formatting
[3-a] Resource Bundles
Resource bundles support internationalization by separating localized data from the source code that uses it. Each resource bundle stores a
map of key/value pairs for a specific locale.
It is common to use or extend java.util.PropertyResourceBundle, which stores the content in an external properties file as shown in the following
example:
ErrorMessages.properties

1/11/2022 56

required user name error message error.username.required=User name field is
required # invalid user name format error.username.alphanumeric=User name must be alphanumeric # duplicate user name error message
error.username.duplicate=User name {0} already exists, please choose another one ...
Multiple resources can be defined to support different locales (hence the name resource bundle). For example, ErrorMessages_fr.properties can
be defined to support the French member of the bundle family. If the resource member of the requested locale does not exist, the default
member is used. In the above example, the default resource is ErrorMessages.properties. Depending on the user's locale, the application (JSP
or Servlet) retrieves content from the appropriate resource.
[3-b] Message Formatting
The J2SE standard class java.util.MessageFormat provides a generic way to create messages with replacement placeholders. A
MessageFormat object contains a pattern string with embedded format specifiers as shown below:
// Example to show how to format a message using placeholder parameters String pattern = "User name {0} already exists, please choose
another one"; String userName = request.getParameter("user_name"); Object[] args = new Object[1]; args[0] = userName; String message =
MessageFormat.format(pattern, args);
Here is a more comprehensive example to render error messages using ResourceBundle and MessageFormat:
// Example to render an error message from a localized ErrorMessages resource (properties file) // Utility class to retrieve locale-specific error
messages public Class ErrorMessageResource { // Returns the error message for the specified error key in the environment locale public String
getErrorMessage(String errorKey) { return getErrorMessage(errorKey, defaultLocale); } // Returns the error message for the specified error key
in the specified locale public String getErrorMessage(String errorKey, Locale locale) { return getErrorMessage(errorKey, null, locale); } // Returns
a formatted error message for the specified error key in the specified locale public String getErrorMessage(String errorKey, Object[] args, Locale
locale) { // Get localized ErrorMessageResource ResourceBundle errorMessageResource = ResourceBundle.getBundle("ErrorMessages",
locale); // Get localized error message String errorMessage = errorMessageResource.getString(errorKey); if (args != null) { // Format the
message using the specified placeholders args return MessageFormat.format(errorMessage, args); } else { return errorMessage; } } // default
environment locale private Locale defaultLocale = Locale.getDefaultLocale(); } ... // Get the user's locale Locale userLocale =
request.getLocale(); // Check if there were any validation errors Errors errors = (Errors)request.getAttribute("errors"); if (errors != null &&
errors.hasErrors()) { // iterate through errors and output error messages corresponding to the "user_name" property ArrayList userNameErrors =
errors.getErrors("user_name"); ListIterator iterator = userNameErrors.iterator(); while (iterator.hasNext()) { // Get the next error object Error error
= (Error)iterator.next(); String errorMessage = ErrorMessageResource.getErrorMessage(error.getKey(), userLocale); output.write(errorMessage
+ "\r\n"); } }
It is recommended to define a custom JSP tag, e.g. displayErrors, to iterate through and render error messages as shown in the above example.
[4] Error Mapping
Normally, the Servlet Container will return a default error page corresponding to either the response status code or the exception. A mapping
between the status code or the exception and a web resource may be specified using custom error pages. It is a good practice to develop static
error pages that do not disclose internal error states (by default, most Servlet containers will report internal error messages). This mapping is
configured in the Web Deployment Descriptor (web.xml) as specified in the following example:
<!-- Mapping of HTTP error codes and application exceptions to error pages --> <error-page> <exception-
type>UserValidationException</exception-type> <location>/errors/validationError.html</error-page> </error-page> <error-page> <error-
code>500</exception-type> <location>/errors/internalError.html</error-page> </error-page> <error-page> ... </error-page> ...
RECOMMENDED JAVA TOOLS
The two main Java frameworks for server-side validation are:
[1] Jakarta Commons Validator (integrated with Struts 1.1)
The Jakarta Commons Validator is a Java framework that defines the error handling mechanism as described above. Validation rules are
configured in an XML file that defines input validation rules for form fields and the corresponding validation error keys. Struts provides
internationalization support to build localized applications using resource bundles and message formatting.
Example to validate the userName field of a loginForm using Struts Validator:
<form-validation> <global> ... <validator name="required" classname="org.apache.struts.validator.FieldChecks" method="validateRequired"
msg="errors.required"> </validator> <validator name="mask" classname="org.apache.struts.validator.FieldChecks" method="validateMask"
msg="errors.invalid"> </validator> ... </global> <formset> <form name="loginForm"> <!-- userName is required and is alpha-numeric case
insensitive --> <field property="userName" depends="required,mask"> <!-- message resource key to display if validation fails --> <msg
name="mask" key="login.userName.maskmsg"/> <arg0 key="login.userName.displayname"/> <var> <var-name>mask</var-name> <var-
value>^[a-zA-Z0-9]*$</var-value> </var> </field> ... </form> ... </formset> </form-validation>
The Struts JSP tag library defines the "errors" tag that conditionally displays a set of accumulated error messages as shown in the following
example:
<%@ page language="java" %> <%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %> <%@ taglib uri="/WEB-INF/struts-bean.tld"
prefix="bean" %> <html:html> <head> <body> <html:form action="/logon.do"> <table border="0" width="100%"> <tr> <th align="right">
<html:errors property="username"/> <bean:message key="prompt.username"/> </th> <td align="left"> <html:text property="username"
size="16"/> </td> </tr> <tr> <td align="right"> <html:submit><bean:message key="button.submit"/></html:submit> </td> <td align="right">
<html:reset><bean:message key="button.reset"/></html:reset> </td> </tr> </table> </html:form> </body> </html:html>
[2] JavaServer Faces Technology
JavaServer Faces Technology is a set of Java APIs (JSR 127) to represent UI components, manage their state, handle events, validate input,
and support internationalization.
The JavaServer Faces API defines the "output_errors" UIOutput Renderer, which displays error messages for an entire page or error messages
associated with a specified client identifier.
Example to validate the userName field of a loginForm using JavaServer Faces:
<%@ taglib uri="https://docs.oracle.com/javaee/6/tutorial/doc/glxce.html" prefix="h" %> <%@ taglib uri="http://mrbool.com/how-to-create-a-
login-validation-with-jsf-java-server-faces/27046" prefix="f" %> ... <jsp:useBean id="UserBean" class="myApplication.UserBean"
scope="session" /> <f:use_faces> <h:form formName="loginForm" > <h:input_text id="userName" size="20"

1/11/2022 57

modelReference="UserBean.userName"> <f:validate_required/> <f:validate_length minimum="8" maximum="20"/> </h:input_text> <!-- display
errors if present --> <h:output_errors id="loginErrors" clientId="userName"/> <h:command_button id="submit" label="Submit"
commandName="submit" /><p> </h:form> </f:use_faces>
REFERENCES
Java API 1.3 -
https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
Java API 1.4 -
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
Java Servlet API 2.3 -
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
Java Regular Expression Package -
http://jakarta.apache.org/regexp/
Jakarta Validator -
http://jakarta.apache.org/commons/validator/
JavaServer Faces Technology -
http://www.javaserverfaces.org/
** Input Data Validation:
While data validations may be provided as a user convenience on the client-tier, data validation must always be performed on the server-tier.
Client-side validations are inherently insecure because they can be easily bypassed, e.g. by disabling Javascript.
A good design usually requires the web application framework to provide server-side utility routines to validate the following:
[1] Required field
[2] Field data type (all HTTP request parameters are Strings by default)
[3] Field length
[4] Field range
[5] Field options
[6] Field pattern
[7] Cookie values
[8] HTTP Response
A good practice is to implement a function or functions that validates each application parameter. The following sections describe some example
checking.
[1] Required field
Always check that the field is not null and its length is greater than zero, excluding leading and trailing white spaces.
Example of how to validate required fields:
// PHP example to validate required fields function validateRequired($input) { ... $pass = false; if (strlen(trim($input))>0){ $pass = true; } return
$pass; ... } ... if (validateRequired($fieldName)) { // fieldName is valid, continue processing request ... }
[2] Field data type
In web applications, input parameters are poorly typed. For example, all HTTP request parameters or cookie values are of type String. The
developer is responsible for verifying the input is of the correct data type.
[3] Field length
Always ensure that the input parameter (whether HTTP request parameter or cookie value) is bounded by a minimum length and/or a maximum
length.
[4] Field range
Always ensure that the input parameter is within a range as defined by the functional requirements.
[5] Field options
Often, the web application presents the user with a set of options to choose from, e.g. using the SELECT HTML tag, but fails to perform server-
side validation to ensure that the selected value is one of the allowed options. Remember that a malicious user can easily modify any option
value. Always validate the selected user value against the allowed options as defined by the functional requirements.
[6] Field pattern
Always check that user input matches a pattern as defined by the functionality requirements. For example, if the userName field should only
allow alpha-numeric characters, case insensitive, then use the following regular expression:
^[a-zA-Z0-9]+$
[7] Cookie value
The same validation rules (described above) apply to cookie values depending on the application requirements, e.g. validate a required value,
validate length, etc.
[8] HTTP Response
[8-1] Filter user input
To guard the application against cross-site scripting, the developer should sanitize HTML by converting sensitive characters to their
corresponding character entities. These are the HTML sensitive characters:
< > " ' % ;) (& +
PHP includes some automatic sanitization utility functions, such as htmlentities():
$input = htmlentities($input, ENT_QUOTES, 'UTF-8');
In addition, in order to avoid UTF-7 variants of Cross-site Scripting, you should explicitly define the Content-Type header of the response, for
example:
<?php header('Content-Type: text/html; charset=UTF-8'); ?>
[8-2] Secure the cookie
When storing sensitive data in a cookie and transporting it over SSL, make sure that you first set the secure flag of the cookie in the HTTP

1/11/2022 58

https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/commons/validator/
http://www.javaserverfaces.org/

TOC

response. This will instruct the browser to only use that cookie over SSL connections.
You can use the following code example, for securing the cookie:
<$php $value = "some_value"; $time = time()+3600; $path = "/application/"; $domain = ".example.com"; $secure = 1; setcookie("CookieName",
$value, $time, $path, $domain, $secure, TRUE); ?>
In addition, we recommend that you use the HttpOnly flag. When the HttpOnly flag is set to TRUE the cookie will be made accessible only
through the HTTP protocol. This means that the cookie won't be accessible by scripting languages, such as JavaScript. This setting can
effectively help to reduce identity theft through XSS attacks (although it is not supported by all browsers).
The HttpOnly flag was Added in PHP 5.2.0.
REFERENCES
[1] Mitigating Cross-site Scripting With HTTP-only Cookies:
http://msdn2.microsoft.com/en-us/library/ms533046.aspx
[2] PHP Security Consortium:
http://phpsec.org/
[3] PHP & Web Application Security Blog (Chris Shiflett):
http://shiflett.org/

CWE:
550

External References:
An example for using apostrophe to hack a site can be found in "How I hacked PacketStorm (by Rain Forest Puppy), RFP's site"
"Web Application Disassembly with ODBC Error Messages" (By David Litchfield)
CERT Advisory (CA-1997-25): Sanitizing user-supplied data in CGI scripts

Link Injection (facilitates Cross-Site Request Forgery)

Cause:
Sanitation of hazardous characters was not performed correctly on user input

1/11/2022 59

http://msdn2.microsoft.com/en-us/library/ms533046.aspx
http://phpsec.org/
http://shiflett.org/
http://cwe.mitre.org/data/definitions/550.html
https://packetstormsecurity.com/files/10631/rfp2k01.txt.html
http://www.cgisecurity.com/lib/webappdis.doc
http://www.cert.org/advisories/CA-1997-25.html

Risk:
It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social security
number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing the
hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server
The software constructs all or part of a command, data structure, or record using externally-influenced input, but fails to neutralize elements
that could modify how it is parsed or interpreted.
Link Injection is the modifying of the content of a site by embedding in it a URL to an external site, or to a script in the vulnerable site. After
embedding the URL in the vulnerable site, an attacker is able to use it as a platform to launch attacks against other sites, as well as against
the vulnerable site itself.
Some of these possible attacks require the user to be logged in to the site during the attack. By launching these attacks from the vulnerable
site itself, the attacker increases the chances of success, because the user is more likely to be logged in.
The Link Injection vulnerability is a result of insufficient user input sanitization, the input being later returned to the user in the site response.
The resulting ability to inject hazardous characters into the response makes it possible for attackers to embed URLs, among other possible
content modifications.
Below is an example for a Link Injection (We will assume that site "www.vulnerable.com" has a parameter called "name", which is used to
greet users).
The following request:
HTTP://www.vulnerable.com/greet.asp?name=John Smith
Will yield the following response:
<HTML> <BODY> Hello, John Smith. </BODY> </HTML>
However, a malicious user may send the following request:
HTTP://www.vulnerable.com/greet.asp?name=
This will return the following response:
<HTML> <BODY> Hello, . </BODY> </HTML>
As this example shows, it is possible to cause a user's browser to issue automatic requests to virtually any site the attacker desires. As a
result, Link Injection vulnerability can be used to launch several types of attack:
[-] Cross-Site Request Forgery
[-] Cross-Site Scripting
[-] Phishing

Affected Products:
This issue may affect different types of products.

1/11/2022 60

Fix Recommendation:

General

There are several mitigation techniques:
[1] Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur, or provides constructs that make it easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's Anti-XSS library, the OWASP
ESAPI Encoding module, and Apache Wicket.
[2] Understand the context in which your data will be used, and the encoding that will be expected. This is especially important when transmitting
data between different components, or when generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the appropriate encoding
on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on whether the output is in the:
[-] HTML body
[-] Element attributes (such as src="XYZ")
[-] URIs
[-] JavaScript sections
[-] Cascading Style Sheets and style property
Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the XSS Prevention Cheat Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
for more details on the types of encoding and escaping that are needed.
[3] Strategy: Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the
network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
[4] Strategy: Output Encoding
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an encoding is not specified,
the web browser may choose a different encoding by guessing the web page encoding. This can cause the web browser to treat certain
sequences as special, opening up the client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.
[5] Strategy: Identify and Reduce Attack Surface
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that support the HttpOnly
feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent the user's session cookie from being
accessible to malicious client-side scripts that use document.cookie. This is not a complete solution, since HttpOnly is not supported by all
browsers. More importantly, XMLHTTPRequest and other powerful browser technologies provide read access to HTTP headers, including the
Set-Cookie header in which the HttpOnly flag is set.
[6] Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy: a whitelist of acceptable inputs that strictly conform to
specifications. Reject input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively on a
blacklist of malicious or malformed inputs. However, blacklists can be useful for detecting potential attacks or determining which inputs are so
malformed that they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values,
missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if you are expecting colors such as "red" or
"blue."
When dynamically constructing web pages, use stringent whitelists that limit the character set based on the expected value of the parameter in
the request. All input should be validated and cleansed: not only parameters that the user is supposed to specify, but all data in the request,
including hidden fields, cookies, headers, the URL itself, and so on. A common mistake that leads to continuing XSS vulnerabilities is to validate
only fields that are expected to be redisplayed by the site. It is common to see data from the request that is reflected by the application server or
the application that the development team did not anticipate. Also, a field that is not currently reflected may be used by a future developer.
Therefore, validating ALL parts of the HTTP request is recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for preventing XSS, although input validation may provide
some defense-in-depth. This is because it effectively limits what will appear in output. Input validation will not always prevent XSS, especially if
you are required to support free-form text fields that could contain arbitrary characters. For example, in a chat application, the heart emoticon ("
<3") would likely pass the validation step, since it is commonly used. However, it cannot be directly inserted into the web page because it
contains the "<" character, which would need to be escaped or otherwise handled. In this case, stripping the "<" might reduce the risk of XSS,
but it would produce incorrect behavior because the emoticon would not be recorded. This might seem to be a minor inconvenience, but it would
be more important in a mathematical forum that wants to represent inequalities.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields), appropriate encoding is still likely to protect you
from injection-based attacks. As long as it is not done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the application even if a
component is reused or moved elsewhere.

1/11/2022 61

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

TOC

CWE:
74

External References:
OWASP Article
The Cross-Site Request Forgery FAQ

Phishing Through Frames

Cause:
Sanitation of hazardous characters was not performed correctly on user input

Risk:
It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social security
number etc.
Phishing is a social engineering technique where an attacker masquerades as a legitimate entity with which the victim might do business in
order to prompt the user to reveal some confidential information (very frequently authentication credentials) that can later be used by an
attacker. Phishing is essentially a form of information gathering or "fishing" for information.
It is possible for an attacker to inject a frame or an iframe tag with malicious content. An incautious user may browse it and not realize that he
is leaving the original site and surfing to a malicious site. The attacker may then lure the user to login again, thus acquiring his login
credentials.
The fact that the fake site is embedded in the original site helps the attacker by giving his phishing attempts a more reliable appearance.

Affected Products:
This issue may affect different types of products.

1/11/2022 62

http://cwe.mitre.org/data/definitions/74.html
https://owasp.org/www-community/attacks/csrf
http://www.cgisecurity.com/csrf-faq.html

Fix Recommendation:

General

There are several mitigation techniques:
[1] Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur, or provides constructs that make it easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's Anti-XSS library, the OWASP
ESAPI Encoding module, and Apache Wicket.
[2] Understand the context in which your data will be used and the encoding that will be expected. This is especially important when transmitting
data between different components, or when generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the appropriate encoding
on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on whether the output is in the:
[-] HTML body
[-] Element attributes (such as src="XYZ")
[-] URIs
[-] JavaScript sections
[-] Cascading Style Sheets and style property
Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the XSS Prevention Cheat Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
for more details on the types of encoding and escaping that are needed.
[3] Strategy: Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the
network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
[4] Strategy: Output Encoding
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an encoding is not specified,
the web browser may choose a different encoding by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See CWE-116 for more mitigations related to
encoding/escaping.
[5] Strategy: Identify and Reduce Attack Surface
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that support the HttpOnly
feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent the user's session cookie from being
accessible to malicious client-side scripts that use document.cookie. This is not a complete solution, since HttpOnly is not supported by all
browsers. More importantly, XMLHTTPRequest and other powerful browser technologies provide read access to HTTP headers, including the
Set-Cookie header in which the HttpOnly flag is set.
[6] Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy: a whitelist of acceptable inputs that strictly conform to
specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on a blacklist of malicious or malformed inputs. However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values,
missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if you are expecting colors such as "red" or
"blue."
When dynamically constructing web pages, use stringent whitelists that limit the character set based on the expected value of the parameter in
the request. All input should be validated and cleansed, not just parameters that the user is supposed to specify, but all data in the request,
including hidden fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS vulnerabilities is to
validate only fields that are expected to be redisplayed by the site. It is common to see data from the request that is reflected by the application
server or the application that the development team did not anticipate. Also, a field that is not currently reflected may be used by a future
developer. Therefore, validating ALL parts of the HTTP request is recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for preventing XSS, although input validation may provide
some defense-in-depth. This is because it effectively limits what will appear in output. Input validation will not always prevent XSS, especially if
you are required to support free-form text fields that could contain arbitrary characters. For example, in a chat application, the heart emoticon ("
<3") would likely pass the validation step, since it is commonly used. However, it cannot be directly inserted into the web page because it
contains the "<" character, which would need to be escaped or otherwise handled. In this case, stripping the "<" might reduce the risk of XSS,
but it would produce incorrect behavior because the emoticon would not be recorded. This might seem to be a minor inconvenience, but it would
be more important in a mathematical forum that wants to represent inequalities.
Even if you make a mistake in your validation (such as forgetting one of 100 input fields), appropriate encoding is still likely to protect you from
injection-based attacks. As long as it is not done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the application even if a

1/11/2022 63

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

TOC

component is reused or moved elsewhere.

CWE:
79

External References:
FTC Consumer Alert - "How Not to Get Hooked by a 'Phishing' Scam"

Reflected Cross Site Scripting

Cause:
Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using JavaScript. A
vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way, an attacker can inject a
malicious script to the application, and the script will be returned in the response. This will then run on the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server, which then
reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most common method
of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to the victim. URLs that contain
the malicious script constitute the core of many phishing schemes, whereby the convinced victim visits a URL that refers to a vulnerable site.
The site then reflects the malicious content back to the victim, and then the content is executed by the victim's browser.

Risk:
XSS attacks can expose the user's session cookie, allowing the attacker to hijack the user's session and gain access to the user's account,
which could lead to impersonation of users.
An attacker could modify and view the users' records and perform transactions as those users. The attacker may be able to perform privileged
operations on behalf of the user, or gain access to any sensitive data belonging to the user. This would be especially dangerous if the user
has administrator permissions.
The attacker could even run a malicious script on the victim's browser which would redirect the user to other pages or sites, modify content
presentation, or even make it possible to run malicious software or a crypto miner.

Exploit Example:
The following example shows a script that returns a parameter value in the response.
The parameter value is sent to the script using a GET request, and then returned in the response embedded in the HTML.

[REQUEST]
GET /index.aspx?name=JSmith HTTP/1.1

[RESPONSE]
HTTP/1.1 200 OK
Server: SomeServer
Date: Sun, 01 Jan 2002 00:31:19 GMT
Content-Type: text/html
Accept-Ranges: bytes
Content-Length: 27

<HTML>
Hello JSmith
</HTML>

1/11/2022 64

http://cwe.mitre.org/data/definitions/79.html
http://www.ftc.gov/bcp/edu/pubs/consumer/alerts/alt127.shtm

An attacker might leverage the attack like this. In this case, the JavaScript code will be executed by the browser.

[REQUEST]
GET /index.aspx?name=>"'><script>alert('XSS')</script> HTTP/1.1

[RESPONSE]
HTTP/1.1 200 OK
Server: SomeServer
Date: Sun, 01 Jan 2002 00:31:19 GMT
Content-Type: text/html
Accept-Ranges: bytes
Content-Length: 83

<HTML>
Hello >"'><script>alert('XSS')</script>
</HTML>

Fix Recommendation:

General

Fully encode all dynamic data from an untrusted source that is inserted into the webpage, to ensure it is treated as literal text and not as a script
that could be executed or markup that could be rendered.
Consider the context in which your data will be used, and contextually encode the data as close as possible to the actual output: e.g. HTML
encoding for HTML content; HTML Attribute encoding for data output to attribute values; JavaScript encoding for dynamically generated
JavaScript. For example, when HTML encoding non-alphanumeric characters into HTML entities, `<` and `>` would become `<` and `>`.
As an extra defensive measure, validate all external input on the server, regardless of source. Carefully check each input parameter against a
rigorous positive specification (allowlist) defining data type; size; range; format; and acceptable values. Regular expressions or framework
controls may be useful in some cases, though this is not a replacement for output encoding.
Output encoding and data validation must be done on all untrusted data, wherever it comes from: e.g. form fields, URL parameters, web service
arguments, cookies, any data from the network, environment variables, reverse DNS lookups, query results, request headers, URL components,
e-mail, files and filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
For every web page that is returned by the server, explicitly set the `Content-Type` HTTP response header. This header value should define a
specific character encoding (charset), such as `ISO-8859-1` or `UTF-8`. When an encoding is not specified, the web browser may choose a
different encoding by guessing which encoding is actually being used by the web page, which would allow a potential attacker to bypass XSS
protections.
Additionally, set the `httpOnly` flag on the session cookie, to prevent any XSS exploits from stealing a user's cookie.
Prefer using a framework or standard library that prevents this vulnerability by automatically encoding all dynamic output based on context, or at
least that provides constructs that make it easier to avoid.
For every web page that is returned by the server, explicitly set the `Content-Security-Policy` HTTP response header, In order to make it
significantly more difficult for the attacker to actually exploit the XSS attack.

CWE:
79

External References:
Cross-site Scripting (XSS)
OWASP XSS Cheat Sheet

1/11/2022 65

http://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

TOC

Application Data

Visited URLs 155

URL

http://10.163.30.226:8088/survey_f_line_audit/CaptchaTest
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/?jsoncallback=jQuery21109417827936253953_164
1815545330
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_details/?jsoncallback=jQuery21109417827936253953_16
41815545330
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545330&_=1641815545331
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545332&_=1641815545333
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545334&_=1641815545335
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545336&_=1641815545337
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545338&_=1641815545339
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545340&_=1641815545341
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545342&_=1641815545343
http://10.163.30.226:8088/survey_f_line_audit/
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545344&_=1641815545345
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545346&_=1641815545347
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545348&_=1641815545349
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21109417827936253
953_1641815545350&_=1641815545351
http://10.163.30.226:8088/survey_f_line_audit/firka_surveyor_wf.jsp
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery21106754165392689226_1641815562
259
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/?jsoncallback=jQuery21106754165392689226_16
41815562259
http://10.163.30.226:8088/survey_f_line_audit/firka_surveyor_survey_wise.jsp
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/?jsoncallback=jQuery211001098179449395
6087_1641815566534
http://10.163.30.226:8088/survey_f_line_audit/f_line_report.jsp
http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReason/?jsoncallback=jQuery211046723464498204725_164
1815568585&_=1641815568586

1/11/2022 66

http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surveywise?jsoncallback=jQuery211046723464498204725
_1641815568585
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report?jsoncallback=jQuery211046723464498204725_1641815
568585
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_ins?jsoncallback=jQuery211046723464498204725_1641815568
585
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery21102890680393544227_1641815581
691
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/?jsoncallback=jQuery21102890680393544227_16
41815581691
http://10.163.30.226:8088/survey_f_line_audit/firka_surveyor_scheduled.jsp
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery211026767536530084257_164181558
7455
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/?jsoncallback=jQuery211031820618992229
01_1641815592549
http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReason/?jsoncallback=jQuery2110146332119191541_16418
15594875&_=1641815594876
http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surveywise?jsoncallback=jQuery2110146332119191541_1
641815594875
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report?jsoncallback=jQuery2110146332119191541_164181559
4875
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery211014904499440757268_164181559
9036
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery211015977376173197055_164181560
3018
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/?jsoncallback=jQuery211008001124743538
535_1641815606387
http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReason/?jsoncallback=jQuery211014591377617423462_164
1815608034&_=1641815608035
http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surveywise?jsoncallback=jQuery211014591377617423462
_1641815608034
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report?jsoncallback=jQuery211014591377617423462_1641815
608034
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_Report?jsoncallback=jQuery211014591377617423462_1641815
608034
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/save_attachments?jsoncallback=jQuery211014591377617423462_16
41815608036
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery21105406775930404588_1641815644
874
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/?jsoncallback=jQuery21105406775930404588_16
41815644874
http://10.163.30.226:8088/survey_f_line_audit/officer_report_menu.jsp
http://10.163.30.226:8088/survey_f_line_audit/viewsummary.jsp
http://10.163.30.226:8088/survey_f_line_audit/view_report.jsp
http://10.163.30.226:8088/survey_f_line_service_audit/resources/det/getRejectedReason/?jsoncallback=jQuery21105513174258813793_1641
815660608&_=1641815660609
http://10.163.30.226:8088/survey_f_line_service_audit/resources/Land/getAppDet_surveywise?jsoncallback=jQuery21105513174258813793_
1641815660608
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/f_line_report?jsoncallback=jQuery21105513174258813793_16418156
60608
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks?jsoncallback=jQuery21105513174258813793_1641
815660608
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getDISRemarks?jsoncallback=jQuery21105513174258813793_16418
15660608
http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getFirkaRemarks_returned?jsoncallback=jQuery21105513174258813
793_1641815660608

1/11/2022 67

http://10.163.30.226:8088/survey_f_line_service_audit/resources/report/getTSLR_Remarks?jsoncallback=jQuery21105513174258813793_164
1815660608
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_summary_App?jsoncallback=jQuery211013125545377596648_
1641815653414
http://10.163.30.226:8088/survey_f_line_audit/view_report_surveyWise.jsp
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/?jsoncallback=jQuery211062384093183127
68_1641815658305
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery21105018571783927821_1641815681
943
http://10.163.30.226:8088/survey_f_line_audit/js/sweetalert.min.js
http://10.163.30.226:8088/survey_f_line_audit/js/SHA1.js
http://10.163.30.226:8088/survey_f_line_audit/js/SHA256.js
http://10.163.30.226:8088/survey_f_line_audit/js/hmac-sha256.js
http://10.163.30.226:8088/survey_f_line_audit/resources/scripts/sha1.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/login.js
http://10.163.30.226:8088/survey_f_line_audit/js/modernizr.js
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/?jsoncallback=jQuery21103241729050346722_164
1815799564
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_details/?jsoncallback=jQuery21103241729050346722_16
41815799564
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103241729050346
722_1641815799564&_=1641815799565
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery21108858933608819208_1641815808
605
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/?jsoncallback=jQuery21108858933608819208_16
41815808605
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/?jsoncallback=jQuery211072354368399431
39_1641815812612
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery21107507759266118663_1641815855
659
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/?jsoncallback=jQuery211079121796243739
74_1641815898035
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery21105816477746315216_1641815899
695
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/?jsoncallback=jQuery211026853445504308
97_1641815923056
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_DIS_App?jsoncallback=jQuery21101925987644364009_16418
15944004
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_TSLR_AppDet?jsoncallback=jQuery211026128542355802_164
1815957853
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/?jsoncallback=jQuery21104942975392205593_164
1815967636
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/?jsoncallback=jQuery211033098226448550294_16
41816279420
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_details/?jsoncallback=jQuery211033098226448550294_1
641816279420
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855
0294_1641816279420&_=1641816279421
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855
0294_1641816279422&_=1641816279423
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855
0294_1641816279424&_=1641816279425
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855
0294_1641816279426&_=1641816279427
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855

1/11/2022 68

0294_1641816279428&_=1641816279429
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855
0294_1641816279430&_=1641816279431
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855
0294_1641816279432&_=1641816279433
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855
0294_1641816279434&_=1641816279435
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855
0294_1641816279436&_=1641816279437
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855
0294_1641816279438&_=1641816279439
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21103309822644855
0294_1641816279440&_=1641816279441
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery211035828906874429434_164181629
0153
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/?jsoncallback=jQuery211035828906874429434_1
641816290153
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/?jsoncallback=jQuery211037219847282012
53_1641816293009
http://10.163.30.226:8088/survey_f_line_audit/js/sweetalert.min.js
http://10.163.30.226:8088/survey_f_line_audit/js/modernizr.js
http://10.163.30.226:8088/survey_f_line_audit/js/jquery.min.js
http://10.163.30.226:8088/survey_f_line_audit/js/SHA1.js
http://10.163.30.226:8088/survey_f_line_audit/js/SHA256.js
http://10.163.30.226:8088/survey_f_line_audit/js/esapi.js
http://10.163.30.226:8088/survey_f_line_audit/js/hmac-sha256.js
http://10.163.30.226:8088/survey_f_line_audit/js/jquery-ui.js
http://10.163.30.226:8088/survey_f_line_audit/resources/scripts/sha1.js
http://10.163.30.226:8088/survey_f_line_audit/js/ESAPI_Standard_en_US.properties.js
http://10.163.30.226:8088/survey_f_line_audit/js/Base.esapi.properties.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/service.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/login.js
http://10.163.30.226:8088/survey_f_line_audit/error.jsp
http://10.163.30.226:8088/survey_f_line_audit/js/jquery.min.js
http://10.163.30.226:8088/survey_f_line_audit/logout.jsp
http://10.163.30.226:8088/survey_f_line_audit/DIS_app_display.jsp
http://10.163.30.226:8088/survey_f_line_audit/Tahsildhar_app_display.jsp
http://10.163.30.226:8088/survey_f_line_audit/js/esapi.js
http://10.163.30.226:8088/survey_f_line_audit/js/ESAPI_Standard_en_US.properties.js
http://10.163.30.226:8088/survey_f_line_audit/js/Base.esapi.properties.js
http://10.163.30.226:8088/survey_f_line_audit/js/jquery.dataTables.min.js
http://10.163.30.226:8088/survey_f_line_audit/js/dataTables.bootstrap.min.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/service.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/form-36.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/on-load-form-36.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/app_det.js
http://10.163.30.226:8088/survey_f_line_audit/js/master.js
http://10.163.30.226:8088/survey_f_line_audit/js/jquery.js
http://10.163.30.226:8088/survey_f_line_audit/js/jquery.session.js
http://10.163.30.226:8088/survey_f_line_audit/js/bootstrap.min.js
http://10.163.30.226:8088/survey_f_line_audit/js/editor_plugin.js

1/11/2022 69

TOC

http://10.163.30.226:8088/survey_f_line_audit/session_logout.jsp
http://10.163.30.226:8088/survey_f_line_audit/js/jquery.jqGrid.min.js
http://10.163.30.226:8088/survey_f_line_audit/js/jquery-ui.js
http://10.163.30.226:8088/survey_f_line_audit/js/jquery.blockUI.js
http://10.163.30.226:8088/survey_f_line_audit/js/grid.locale-en.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/f_line_report.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/f_line_workflow.js
http://10.163.30.226:8088/survey_f_line_service_audit/
http://10.163.30.226:8088/survey_f_line_audit/js/jquery.dataTables.min.js
http://10.163.30.226:8088/survey_f_line_audit/js/dataTables.bootstrap.min.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/form-36.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/on-load-form-36.js
http://10.163.30.226:8088/survey_f_line_audit/js/master.js
http://10.163.30.226:8088/survey_f_line_audit/resources/js/app_det.js
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/?jsoncallback=jQuery21107175137559710869_164
1816384070
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_login_details/?jsoncallback=jQuery21107175137559710869_16
41816384070
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384070&_=1641816384071
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384072&_=1641816384073
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384074&_=1641816384075
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384076&_=1641816384077
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384078&_=1641816384079
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384080&_=1641816384081
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384082&_=1641816384083
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384084&_=1641816384085
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384086&_=1641816384087
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384088&_=1641816384089
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/get_firka_name/15/04/03?jsoncallback=jQuery21107175137559710
869_1641816384090&_=1641816384091
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp?jsoncallback=jQuery21106218749613529222_1641816393
698
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getApp_count/no/?jsoncallback=jQuery21106218749613529222_16
41816393698
http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getAppDet_surveywise/?jsoncallback=jQuery211005638949848822
9606_1641816396898

Failed Requests 51

URL Reason

1/11/2022 70

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getLoginRole/?jsoncallback=jQuery
21109417827936253953_1641815545352

Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/bootstrap.min.js Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/footer.html Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getLoginRole/?jsoncallback=jQuery
21103241729050346722_1641815799586

Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/login_validation/?jsoncallback=jQu
ery21104942975392205593_1641815967636

Response Status '500' -
Internal Server Error

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getLoginRole/?jsoncallback=jQuery
211033098226448550294_1641816279442

Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/Pending_Workflow_RDO.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/Pending_Workflow_RDO.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/bootstrap.min.js Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/header.html Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/footer.html Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/RDO_Menu.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/Pending_Workflow_RDO.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/fs_menu.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/firka_surveyor_wf.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/Pending_Workflow_DRO.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/DIS_app_display.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/dis_menu.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/Tahsildhar_app_display.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/Pending_Workflow_CLR.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/tah_menu.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/sislist.html Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/error.html Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/Error500.html Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/DIS_survey_wise.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/TSLR_survey_wise.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/firka_surveyor_survey_wise.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/f_line_report.jsp Response Status '404' - Not
Found

1/11/2022 71

http://10.163.30.226:8088/survey_f_line_audit/resources/js/TSLR_report.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/DIS_report.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/Error500.html Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/session_logout.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/DIS_survey_wise.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/TSLR_survey_wise.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/firka_surveyor_survey_wise.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/f_line_report.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/firka_returned_application.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/view_report.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/view_report_surveyWise.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/TSLR_report.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/DIS_report.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/firka_returned_application.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/view_report.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/view_report_surveyWise.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/fs_menu.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/firka_surveyor_wf.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/dis_menu.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/DIS_app_display.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/tah_menu.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_audit/resources/js/Tahsildhar_app_display.jsp Response Status '404' - Not
Found

http://10.163.30.226:8088/survey_f_line_service_audit/resources/app_det/getLoginRole/?jsoncallback=jQuery
21107175137559710869_1641816384092

Response Status '404' - Not
Found

1/11/2022 72

